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Chapter 1 

INTRODUCTION 

1.1    DEFINITION OF TELEOPERATION 

The scientific and engineering community often define robot manipulators as mechanical 
motion generating machines. During the last 45 years, dating to the dawn of the nuclear age, 
robot manipulators have become a subject of increasing interest to scientists, the general 
business community, and workers daily involved in any type of assembly or transportation 
task, as a means to perform useful work for which humans are not well suited. Any number 
of factors, including workpiece weight, hostile environments, boredom, and labor costs and 
availability, motivate the consideration of a robot manipulator as an alternative to human 

labor. 

Given the choice to implement a robot, the question immediately arises of controlling the 
robot or alternatively, describing to the robot the task which it has been selected to perform. 
In general, two methods exist to control the robot: a) offline, preprogramming of motions, 
and b) continuous participation of a human operator in the control loop. In the former 
case, the system designers have supplied the manipulator with sufficient computer memory 
to store a path as ia series of discrete points which can be played back at an appropriate 
time to cause the desired motion. This approach at today's current state of development 
requires a simple, static environment because the robot has very little cognitive power to 

adapt to any changes. 

The second approach of having a man in the control loop allows for changes in the 
environment or corrections for unanticipated characteristics of the task such as bent or 
discolored parts. This approach retains the cognitive powers of the human and allows 
him to be removed from the immediate vicinity of the task, should the environment prove 
dangerous. This is referred to as teleoperation, implying the operation of a manipulator 
from a distance. Teleoperation has the disadvantage of not necessarily reducing manpower 
requirements since at least one person must be present. 



1.2    CHARACTERIZATION OF THE TELEOPERATION 
PROBLEM 

1.2.1    Minimum Capabilities and Unilateral Control 

In a teleoperation control mode, at a minimum, the human operator must synthesize a 
positioning command for the robot manipulator. First consider the form of the command 
independently from the manner in which it is input or expressed to the system. The 
positioning command most often takes the form of either a zeroth order time derivative 
(position), or a first order time derivative (rate) command. The command must also be 
referred to a particular set of manipulator coordinates, usually joint, tool, or Cartesian 
(world) coordinates. Joint coordinates simply refer to the displacements of the manipulator 
joints. Tool coordinates refer to a coordinate frame which is permanently fixed in the 
tool. Hence when driving a screw with a screwdriver, it is convenient to place one of the 
coordinate axes along the screwdriver axis, and command the required motion as a rotation 
about that axis coupled with a translation along that axis as the screw advances. Cartesian 
or world coordinates refer simply to a set of axes fixed somewhere in inertial space, and are 
independent of the manipulator or task. 

The control mode employing position only commands is often termed unilateral con- 
trol, implying that information flows one way only from the operator to the manipulator. 
Actually the nomenclature, "unilateral control," reflects questionable word choice since the 
operator always has some measure of visual feedback through which he can monitor the 
process. The distinction arises from the fact that the real time communication and control 
hardware which directly and continuously links and couples the input device and the slave 
manipulator, carries only position information, and this information flows in one direction 
from the operator to the manipulator. Unilateral control constitutes the minimum possible 
configuration of a teleoperation system. 

1.2.2    Advanced Sensory Capabilities and Bilateral Control 

Many studies have shown that while employing a teleoperator system, a human operator can 
complete tasks with greater efficiency and speed by increasingly accessing his native sensory 
capabilities. In addition to sight, the kinesthetic and touch senses provide the greatest aids 
in teleoperation systems. The kinesthetic sense allows the user to perceive the position 
of his body parts through the innate position and force sensing capabilities in his muscles. 
Hence the ability of most humans to touch their nose with their eyes closed. The tactile and 
force sensing capabilities are incorporated into the skin, skeleton and musculature. Access 
to these faculties requires a mechanical mechanism with both a large range of motion for the 
kinesthetic sense, and force generating capability for the tactile and force senses. Modern 
computers and graphics displays have also allowed greater use of the visual sense through 
computer generated cues such as force histograms and solid modelling of the slave robot. 

If a mechanical mechanism is made available for the system position input which has a 
significant range of motion, roughly a one foot cube, and this mechanism can be equipped 



with force generating actuators, then "bilateral control" can be implemented. The position 
of this mechanism is detected through integral hardware and fed to the slave robot as 
input in the normal unilateral fashion. The slave manipulator is equipped with some force 
sensing capability. This force data is transmitted back to the master mechanism and used as 
a command signal to the actuators such that the mechanism will drive against the operator 
with a force representative of that experienced by the slave robot. Thus the operator can 
feel the forces which the manipulator experiences. In this mode of operation, the master and 
slave mechanisms share position and force coupling, with the former flowing from master 
to slave and the latter flowing from slave to master. Hence this control is termed bilateral. 

1.2.3    Position Input Hardware 

Position input hardware can take many forms with varying complexity, usefulness, access to 
the human senses and efficiency. The computer keyboard comprises the most rudimentary 
form of input device. When using a keyboard, the desired end effector coordinates or joint 
positions are input as simple numerical sequences which the robot can then follow. The 
button box has slightly more advanced capability. The device typically has one biposition 
switch for actuating each degree of freedom in a positive or negative sense. 

The isometric joystick is an input device of moderate capability. It consists of a handgrip 
mounted on a frame with a small amount of mechanical compliance. A user pushes or twists 
the handgrip causing a deflection of the mounting structure. Sensing hardware maps the 
deflections to the manipulator as a combination of rotational and translational rate com- 
mand in proportion to and in the direction of the deflection. The isometric joystick typically 
functions only as a rate command device, largely because of the self centering nature of the 
compliant base when the operator releases the handgrip. The device suffers from the cross 
coupling phenomena whereby the user suffers an inability to independently express rotation 
and translation commands to the system. A translation command expressed as a force in 
a particular direction must be applied on an axis through the center of compliance of the 
base. If the force does not intersect the center, it will generate a torque about the base, 
which the system interprets as a rotation command. In order to overcome this difficulty, 
NASA implemented two different isometric joystick, one purely translational and the other 
purely rotational, for control of the space shuttle arm. 

The input devices of greatest capability access the human kinesthetic sense and can 
therefore operate in a bilateral control mode. This category has two general types of device, 
the exoskeleton and the joystick. The exoskeleton comprises a series of joints and links which 
are congruent to and are worn upon the human arm. The exoskeleton must necessarily have 
a minimum of seven degrees of freedom corresponding to the gross connectivity between the 
palm and torso. The joystick typically comprises six degrees of freedom with a free standing 
linkage and base somewhat removed from the operator's person. With either device, the 
operator grasps a handgrip and moves his palm in a fashion which maps directly to the 
desired translation and rotation of the slave manipulator. The forces are usually fed back 
directly to the operator's palm, although in the exoskeleton case they can also be fed back 
to other points on the operator's arm. 



1.2.4    Control of a Bilateral Teleoperator System 

A teleoperation system provides a means to command the actions of a slave robot manip- 
ulator and to interface a human operator to the system. Hence the goal of a teleoperation 
system is to control a manipulator. However when considering the engineering development 
of such a system, one must take into account that two multiple degree of freedom mechanical 
systems, the master input device and the slave manipulator, must be individually controlled 
to perform a certain function peculiar to each component, and also made to operate as an 
integrated system. In the case of the master, a local controller must be implemented to 
exert the desired force and torque against the human operator while reading the position 
detecting components to infer the human palm position and hence the desired manipulator 
position. For the slave manipulator, the local controller must cause the manipulator to 
come to a certain position and orientation. Often this position control takes the form of 
hybrid force/position control where some freedoms are controlled in force mode while oth- 
ers are controlled in position mode. Finally a hierarchical controller must be implemented 
to act as the interface and communication channel between the two local control systems 
and to monitor other global issues such as safety and reasonableness checks. A typical 
reasonableness check takes the form of monitoring the motion command from the master to 
assure that it does not exceed the actuator capabilities of the slave from an acceleration or 
torque generating viewpoint. The hierarchical controller must also be able to process and 
pass information at high rates of speed since significant time delays severely hamper the 
operator's ability to participate successfully in the control loop. 

1.2.5    Characterization of the Component Dynamics 

In a bilateral teleoperation system employing a kinesthetic master with a significant range of 
motion, both major mechanical components, the master input device and the slave manipu- 
lator have very complicated mass dynamics. In particular, the mass dynamics of both com- 
ponents contain time varying parameters, nonlinear second degree first order time derivative 
terms, and severely cross coupled multiple input and multiple output control variables. This 
characterization suggests that the classical single input, single output, linear, constant pa- 
rameter control theory will not be well suited for application to the control of either of the 
components. 

1.3    FOCUS OF RESEARCH EFFORT 

This research effort focused on the exoskeleton as a position input and force reflection or 
feedback device as a discrete portion of a teleoperator system. The research proceeded 
from the assumption that a slave manipulator and interface existed elsewhere as discrete 
components, and that the exoskeleton could be designed independently as a distinct com- 
ponent given adequate performance and interface specifications. In particular, the research 
focused on the controller which functions to drive the exoskeleton motors in a fashion to 
replicate with high fidelity, the forces and torques which the exoskeleton must exert against 
the operator to provide the sense of force feedback. 



1.3.1    Exoskeleton Advantages 

The exoskeleton has several advantages over the joystick. Firstly, it is much more natural 
than a joystick since it is worn over the human arm. Thus the exoskeleton does not obstruct 
the view of the operator as a joystick might. Secondly, the exoskeleton has a redundant 
freedom which can be used to advantage for position commanding the redundant freedom of 
a slave robot if a seven degree of freedom slave were implemented. Finally, the exoskeleton 
implements "load internalization." Load internalization is the notion that the forces and 
torques to be exerted against the human are transmitted back to the human as reaction 
loads of the exoskeleton base structure. Effectively, no net force or torque will be exerted 
against the human. This is important in space applications where the operator would 
experience a net force if he were using a joystick, and would be required to strap himself to 
a wall or otherwise brace himself so that the force feedback would not accelerate him away 

from the control panel. 

1.3.2    Exoskeleton Disadvantages 

The exoskeleton has two disadvantages over the joystick. The first is the overall size and 
mass. Since the exoskeleton must be the same size as the human it occupies more space 
and embodies more mass than a joystick. The second disadvantage is that the redundant 
freedom represents a significant complication to the problem of controlling the exoskeleton 
motors. This complication is not deemed to be insurmountable and comprised one of the 

research thrusts of this activity. 

1.3.3    Baseline of Study 

The baseline of this study is the exoskeleton under development by Martin Marietta Corpo- 
ration, Aero & Naval Systems, Baltimore, Maryland. At the current state of development, 
this device has a preliminary mechanical design to include overall link dimensions and ac- 
tuator sizing. This development was funded in part by the United States Air Force. At the 
time of the commencement of this research effort, no work had been done upon the control 

system. 

1.4    IDENTIFICATION OF PERFORMANCE REQUIRE- 
MENTS 

The performance requirements of an exoskeleton position input device are not completely 
developed, and there is no universal source which addresses how well a device should per- 
form. However from the efforts of previous researchers, the following performance require- 
ments have been identified, and to some extent quantified. The following specifications were 

adopted for this program: 

• Translation^ Volume: 12 - 18 inch cube 

• Incremental Translation Sensitivity: 0.02 inch 



• Orientational Range: See Figure 1.1 

• Incremental Orientational Sensitivity: 0.2 degrees 

• Force Feedback Range: 0 - 10 lbf. 

• Force Feedback Resolution: 5% of Applied Force 

• Torque Feedback: 0 - 10 in lbf. 

• Torque Feedback Resolution: 5% of Applied Torque 

• Delay Time: Less than 0.15 sec. 

• Exoskeleton Bandwidth: Greater than 4.5 Hz. 

• Force Feedback Frequency Range: Less than 0.64 Hz. 

Most of the above are self explanatory. Some remarks are appropriate for the last three 
items. The time delay is defined as the amount of elapsed time from when a stimulus is 
applied to the slave manipulator to when the force feedback is fully applied to the operator. 
Time delays arise from communication delays, numerical processing, and the time required 
to accelerate the mass content of the exoskeleton. Related to the time delay is the system 
bandwidth, essentially a statement of how fast the exoskeleton system can replicate a force 
command. 

The final item, the force feedback frequency range, is indicative of the fact that the 
human has limited bandwidth in force tracking capabilities. Stated differently, if the ex- 
oskeleton can replicate forces perfectly at frequencies greater than 0.64 Hz., then the human 
would not be capable of responding with sufficient speed to balance the load, and the ex- 
oskeleton handgrip would be torn out of the operator's hand. 
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Figure 1.1: Human Wrist Range of Motion 



Chapter 2 

RESEARCH APPROACH 

To paraphrase the introductory chapter, this research effort focused upon developing a 
controller the function of which is to read a force and torque feedback command from a slave 
manipulator in a bilateral teleoperation system, and cause the motors of the exoskeleton 
feedback device to be driven in such a fashion as to promptly replicate the force and torque 
command by exerting forces and torques against the human operator. 

In developing this controller, it is necessary to describe the exoskeleton kinematics, and 
dynamics since the controller must ultimately take into account the mass content of the 
system when formulating the torque required at the motors to generate the required forces 
j,nd torques at the handgrip. The various approaches to controller formulation must then 
be weighed in deciding which controller would be most effective from a operational, cost to 
design, and cost to develop and operate viewpoint. 

In developing the controller, the characteristics of the system must be recalled. The 
exoskeleton is a highly nonlinear, multiple input, multiple output, coupled, and time varying 
system. Additionally, the system might be classified as possessing 21st order dynamics, 
counting two time derivatives associated with the mass content of each of the seven links, 
and one time derivative for the motor inductance of each of the seven motors. 

It is worthwhile to investigate the magnitude and variance of the dynamic parameters 
before entering the controller development process. While the characterization of the pre- 
ceding paragraph is not simple, the system may be operating in a domain wherein the 
nonlinearities may not be severe and the variance of the system behavior may be slow. To 
this end the first step in the research approach was to make a computer model of the system 
mass dynamics and to exercise the model to discover the magnitude of the various terms. 

Next the type of controllers available must be considered. The different approaches are 
highlighted in the following. Finally, a quality metric of the controller must be established 
and exercised before the actual controller is realized in hardware. Since hardware devel- 
opment is very expensive, and errors in the hardware stages of development can often be 

8 



fatal to a program, a method of deducing the controller effectiveness before committing to 

hardware is very desirable. 

2.1 GENERAL CONTROL APPROACHES 

Three general approaches are implemented or under study in the robotics community for 
the control of robotic mechanisms. It is characteristic of all these approaches that a model 
of the system mass dynamics is required as a baseline for further development. 

2.1.1     Classical Techniques 

The most commonly applied type of controller for industrial robotic mechanisms is the 
classical approach. The system is treated as discrete, decoupled, linear, constant parameter 
subsystems. This is a gross simplification but is nevertheless applied with some effective- 
ness. The domain of the system applicability is small, essentially restricted to low speed 

applications. 

Classical techniques have the advantage of being very well developed and understood. 
They have the additional advantage of being realized with analog components which yield 
very fast response with effectively zero computational processing time. 

2.1.2    Linearization and the State Variable Method 

The state variable method allows the complete treatment of the system by performing 
linearizations about certain operating points and implementing a controller about each 
operating point with parameter changes when the system moves into a different operating 
point. The method has been considered in university research. It has been shown to be 
effective by simulation. However currently it is extremely laborious to implement. 

2.1.3    Model Based Adaptive Control 

This approach assumes that a computer model of the system dynamics can be run in parallel 
with the actual operating system. The model can often be a simplified version of the actual 
system so that it can run in real time. The difference between the model performance and 
the actual system performance is taken as an error signal to drive and correct the actual 
system. In more advanced systems, the model can be adapted or updated to behave more 
like the actual system to provide greater accuracy. 

A variation of this approach is to run a model in parallel with the actual system wherein 
the nonlinear terms are calculated and feed forward into the actual system to effectively 
cancel the difficult to control terms. This approach has been used effectively in actual 

hardware in the universities. 



2.2    CONTROLLER QUALITY METRIC 

Given the selection and design of the controller, a metric must be developed to test the 
quality of the controller. This program was undertaken with the "virtual spring" approach 
as the quality metric methodology. In this method, the exoskeleton system is simulated 
with a computer under the influence of the previously postulated controller. Since the 
behavior of a human can not be simulated in a computer, the simplifying assumption that 
the exoskeleton is tied to a movable ground point through a six degree of freedom spring 
is adopted. This spring replicates the compliance of the flesh of the operator's hand. To 
the extent that the exoskeleton controller drives the motors, and linkages of the exoskeleton 
system in such a fashion as to compress and twist the spring to a displacement representative 
of the force and torque feedback commands at all times, the controller can be said to be 
effective. Classical methods of quality can be applied such as the root mean square of the 
spring displacement error. In a broader sense, the fundamental stability of the system can 
be observed by the absence of oscillations. 

This approach allows broad simulation capability by allowing the spring attachment 
point to ground to move in the fashion that an operator might move his hand to venerate 
a robot position trajectory. While this is ongoing, any type of force feedback commands 
can be simulated and applied to the system. Thus the approach comprises a truly genera] 
method to examine controller merit. 
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Chapter 3 

EXOSKELETON KINEMATICS 

This chapter describes the exoskeleton kinematics. The first section describes the system 
kinematics starting from the Denavitt-Hartenburg notion for serially connected bodies to 
the forward and inverse kinematics. The second section describes the attempts to express 
the kinematics of the redundant freedom. Throughout this document all vectors in 
R3 are understood to be expressed in the global coordinate frame designated 
by the subscript, 0. 

3.1     EXOSKELETON KINEMATIC DESCRIPTION 

The exoskeleton mechanism comprises a set of seven rigid bodies or links connected by 
seven revolute joints in a serial chain fashion. The chain has two ends. The end fixed to 
ground is termed proximal for the purposes of this report, and the end free to move in space 
is termed distal. The serial connection implies that the distal end of each link connects to 
the proximal end of the next link in the chain such that no one link connects to more than 
two other links, and the first link connects to ground while the distal end of the last link 
in the chain connects to nothing. According to Griibler's criterion, the system has seven 
overall degrees of freedom, the separate links have 42 degrees of freedom (each of the seven 
links has six degrees of freedom) while the seven revolute joints destroy 35 freedoms (five 
degrees of freedom for each of the seven single degree of freedom joints). The links and 
joints are arranged so that the exoskeleton has a geometry congruent to that of the human 
arm. Technically the human arm has a multiplicity of freedoms, but if the forearm and palm 
are considered to be rigid bodies, then the arm has seven freedoms between the shoulder 
socket and palm (Figure 3.1). 
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Figure 3.1: Martin Marietta Exoskeleton 

3.1.1    Denavitt-Hartenburg Notation 

The Denavitt-Hartenburg (Dl) notation was selected for formulating the exoskeleton kine- 
matics because of its near universal use within the robotics community for describing serial 
mechanisms with lower pair joints (rotational, slider, or cylindric joints). Each link has a 
local Cartesian coordinate frame with the unit vector z axis collinear with the revolute axis 
joining the distal end of the proximal link to proximal end of the distal link (Figure 3.2). 
The local z axis vector bears the same number as the link to which it is fixed. The direction 
of the local z axis vector is determined with the twist angle a& between consecutive z axes 
vectors. The local x axis unit vector lies along the common perpendicular between consec- 
utive rotational axes with its sense positive from the proximal rotational axis to the distal 
axis. The twist angle, a*, is defined as the angle subtended by two adjacent z axis vectors, 
with its sense given as a positive right hand rotation about the distal x* vector measured 
from the proximal Zj vector to the distal ?k vector. 

The distance between adjacent x vectors is a scalar and is denoted as dj. It has a positive 
''alue when the common perpendicular intersects the proximal Zj axis on the positive side 
of the proximal origin. The local y vectors are given as the cross product, y = zx x. The 
distance between consecutive.? vectors is a scalar measured along the common perpendicular 
between the z vectors. It always has a positive value and is denoted as a,*. The previous 
three parameters are not variables to the extent that they are designed into the mechanism 
structure and are fixed by the machinist. 
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Ground / Proximal 
Distall / End Effector 

Figure 3.2: Denavitt-Hartenburg Notation 

The fourth and final parameter is the single variable in the completed mechanism, 9. It 
is the angle subtended by adjacent x vectors when the x vectors are projected into a plane 
normal to the proximal z vector. The angle 9k is measured as a positive right hand rotation 
about the proximal ZJ vector from the projection of the Sj to the projection of the xk. 

3.1.2    Denavitt-Hartenburg Parameters for the Exoskeleton 

Figure 3.3 depicts a stick model representation of the exoskeleton. The cylindrical shapes 
with the circumferential line represent the seven rotational joints. Each coordinate frame 
is shown in its appropriate position and orientation. The vector set, {x0,yo,z0} defines 
the global frame. This figure depicts the exoskeleton in what is referred to as the neutral 
position, with the upper arm (Link 3) parallel to x0 (vertical downwards) and the forearm 
(Link 5) parallel to z0 and in the plane of containing x0 and z0. 
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gripper 
centerpoint 

Figure 3.3: Kinematic Model with Coordinate Axes 

3.1.3    Discussion of the Exoskeleton Geometry 

The parameters listed in Table 3.1 describe the stick model representation of the exoskeleton 
depicted in Figure 3.3 and not the actual hardware depicted in Figure 3.1. The difference 
is that the hardware version of Figure 3.1 has a nonzero joint displacement parameter, d2, 
along the zx axis vector. This simplification is followed throughout. The following analysis 
however is completely general. 

The nonzero joint displacement has a noteworthy effect upon the interaction of the 
exoskeleton system with the human arm. The human arm can rotate directly about the its 
upper arm axis, l*2, in Figure 3.3. During this maneuver, Link 3 of the actual exoskeleton 
hardware will describe a circular arc about the z2 axis. Hence the actual hardware will 
slide about the upper arm during this maneuver. At this juncture, this phenomena does 
not appear problematic. Its complete study is beyond the scope of this research effort. 
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Link 

(Degrees) 

aij 

(Inches) (Inches) 

1 270 0 0 
2 90 0 0 
3 270 0 18 
4 270 0 0 
5 270 0 12 
6 90 0 0 
7 0 0 0 

Table 3.1: Exoskeleton Denavitt-Hartenburg Parameters 

It is also noteworthy that so many of the displacement parameters, the d{ and a^, have 
the value zero. This greatly simplifies the design and computer code of the controller. There 
is no loss of generality in making these parameters zero. It is considered good design. There 
are a large number of robot arms on the market today which reflect very little consideration 
of the kinematic design, and feature nonzero displacement values. This greatly increases 
the computational complexity and often induces undesirable perturbations in the system 
mass dynamics, and hence makes the synthesis of smooth motions more difficult. 

3.1.4    Kinematic State and Selection of Generalized Coordinates 

For the purposes of this report, the kinematic state (state) of the exoskeleton refers to 
the specification of the position and orientation (pose) of each link in the exoskeleton, the 
angular and translational velocity vectors of each link, and the angular and translational 
velocity vectors of each link. In order to completely describe the state, seven coordinates, 
one for each degree of freedom, and the first two time derivatives of these coordinates are 
required. 

An infinity of choices exist for the selection of generalized coordinates or simply co- 
ordinates. Two sets of coordinates prove especially useful in describing the_^ exoskeleton 
mechanism. The seven Denavitt-Hartenburg joint displacement parameters, 0, comprise a 
complete set of coordinates. When each element of the vector is assigned a value, then the 
pose of each link is determined, and the time derivatives of the 9 determine the link velocity 
and acceleration vectors through one to one, unique linear mappings. Since ultimately the 
exoskeleton motors generate torques along the z vectors and directly influence the 9, these 
coordinates prove convenient. They have a disadvantage in that the user cannot easily 
relate to this set in a meaningful fashion. 

A more useful set of coordinates for the user is the pose of the exoskeleton handgrip, Link 
7, and a scalar representing the redundant freedom or elbow. The position of the handgrip 
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is represented by a vector in R3 from a global Cartesian coordinate frame to a point in 
the handgrip. The orientation of the handgrip is represented by a 3 x 3 rotation matrix 
consisting of the ordered set of column vectors, xo,ya,ZG representing the expression in 
the global coordinate frame of the unit vectors defining the Cartesian frame fixed in Link 
7. The position of the redundant freedom is denoted by the scalar <f>, which is defined in 
Section 3.2. 

3.1.5    Zeroth Order Forward Kinematics 

The zeroth order or static forward kinematics refer to the expression of the pose of the 
handgrip and the redundant freedom scalar <f> as a function of the 0 vector. First consider 
the orientational problem. The orientation of a distal link relative to the adjacent proximal 
link is expressed by a single rotation matrix comprising the ordered product of the rotation 
matrices embodying the Denavitt-Hartenburg rotational parameters, 0 and a: 

Ä,    = Äflj Raj 

where : 
'10            0 

Ra} = 0   cos Qj    — sin aj 

and 

0   sin aj     cos aj 

Re, = 

cos 0j    — sin 0j    0 
sin 0j     cos 0j     0 

0           0        1 

(3.1) 

(3.2) 

(3-3) 

To express the orientation of the any link in global coordinates, one simply has to form the 
matrix product of all the intermediate local transformations in the chain between the link 
in question and ground. Hence to express the orientation of the handgrip we have: 

Rhg = Ä1234567 = Ä1Ä2Ä3Ä4Ä5Ä6Ä7 (3.4) 

The formulation of the system mass dynamics requires the position of the center of 
gravity of each link. It is convenient for computer programming purposes to form the 
expression of the orientation of each link relative to ground. The recursive nature of the 
successive matrix multiplications also adds to the ease of computer programming. Thus we 
have: 

R\2   —   R\R% 

R123   —   R1R2R3 — R12R3 

(3.5) 
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Äl 234 

etc. 

=     R1R2R3R4 — Äi 23 A4 

The formulation of the position portion of the zeroth order forward kinematics proceeds 
by summing the set of vectors describing the position of a distal coordinate frame (frame 
j) relative to the adjacent proximal frame (frame i). To form the position vector and then 
map its expression to global coordinates we write: 

Pj/i = R12..A 

" 0 " 
0 + Re} 

aij 

0 

UJ 0 
(3-6) 

The position of the handgrip is then written as: 

Phg/O = A/0 + P2/I + P3/2 + --- + Pe/5 + Phg/6 (3.7) 

3.1.6    Zeroth Order Inverse Kinematics 

As previously stated, the analyst experiences difficulties relating the exoskeleton state to 
the joint coordinates, 6. It is much more convenient to discuss the state in terms of the 
handgrip as expressed in world coordinates, and the redundant freedom as expressed in its 
own scalar coordinate, hereafter referred to as the operator coordinates. Hence a computer 
routine to perform the mapping from operator coordinates to the 6 vector, the inverse 
kinematics, is a very useful analytic tool. 

A closed form solution for the inverse kinematics of a seven revolute serial mechanism 
does not exist at this time. A numeric routine was developed to solve the inverse kinematics. 
The routine proceeds by solving for the difference between the desired operator coordinate 
values and actual operator coordinate values. The orientational error is expressed by taking 
advantage of Chasles' theorem [Gl] which states that the orientational difference between 
two bodies can be accomplished by a single rotation about a single axis. The rotation 
matrix which transforms from the actual orientation to the desired orientation, RA/D 

1S 

written: 

RA/D = P-DP-A (3.8) 

We can then take advantage of the fact that the magnitude of the rotation, 7, is given by: 

7 = cos l((traceRAjD - l)/2) (3.9) 

17 



The axis of rotation, F, is found as the normalized eigenvector associated with the unity 
eigenvalue of RAID- Hence we can write the orientational error as a vector, ARAm: 

ARA/D = 7f (3.10) 

The handgrip positional error is found simply as: 

*PA/D = PD-PA (3-11) 

The elbow or redundant freedom position is described by the parameter, <f> (See Section 
3.2). The elbow positional error, A<f>, is found as the scalar difference: 

A<f> - (frdesired ~ factual (3.12) 

Given the operator coordinate error, the associated error in joint coordinates can be 
found by applying differential kinematics and premultiplying by the augmented inverse 
jacobian matrix (See Section 3.2 and the discussion of the first order forward kinematics): 

A0 = Jaug 

7Ar 

&PA/D 
A<l> 

(3.13) 

In applying the above, one must remember that the jacobian matrix has a functional depen- 
dence on the exoskeleton state and that the relation therefore holds only for infinitetesimal 
displacements. Therefore, imposing an upper limit on the operator coordinate error step 
size before applying the above will aid in the numerical convergence and accuracy. A new 
set of joint positions is then found by: 

9new = 6old + A0 (3.14) 

For the first iteration, the joint displacements at the neutral position depicted in Figure 
3.3 are used. A new set of operator coordinates is found by transforming 9 through the 
forward kinematics. The new value for the operator coordinates is compared with the 
desired value, and the above process is repeated until the difference becomes negligible. 

3.1.7    First Order Forward Kinematics 

The first order forward kinematics comprises the expression of the handgrip angular velocity 
vector ÜJhg, the handgrip translational velocity vector, Vhg, and the redundant freedom scalar 
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speed, <f>, as a function of the first order time derivative of the joint position vector, 9. The 
functional relationship is a well known linear mapping. For the exoskeleton the augmented 
jacobian matrix may be used (see Section 3.2). 

"hg 

*hg 

4> 
>aug (3.15) 

The angular velocity portion , the upper 3x7 block, of the jacobian matrix is derived 
from the angular velocity addition theorem for serial linkages. This theorem states that 
the angular velocity of a particular link is the vector sum of the relative angular velocities 
between each pair of links, for each pair between the link in question and ground. Thus we 
have: 

Uj/Q = üJj/o + Ü2ß + ■■■+ ßj/i = ZQO\ + 2*102 + Z293 + • • • + Zidj (3.16) 

The angular velocity for the handgrip relative to ground is therefore written: 

uhg = zo0i + z\92 + z293 + z39\ + 24Ö5 + z506 + Z607 (3.17) 

Switching to vector matrix notation and factoring out the 9 terms, the upper 3x7 block 
of the jacobian is written: 

J, upper = [ZO      Zi      Z2      Z3      Z4      Z5      ZB] (3.18) 

The translational velocity portion, the lower 3x7 block, of the unaugmented jacobian 
is derived from the relative translational motion theorem for rigid bodies which states that 
the translational velocity of a body B equals the translational velocity of a body A plus the 
translational velocity of body B relative to body A: 

VB = vA + vB/A (3.19) 

Since the motion of any two adjacent links is restricted by a rotary axis, we can write the 
translational velocity of the coordinate origin in the distal link, Vj in terms of the velocity 
of the proximal coordinate origin, V{ as: 
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VJ = Vi + ZiOj x Pjji (3.20) 

One can apply the above relation for each joint throughout the entire chain with respect 
to the handgrip to arrive at the translational velocity of the handgrip: 

"hg/o = ZQÖI x Phg/0 + zx$\ x Phg/l + ... + zs66 x Phg/5 + zee7 X Phg/6 (3.21) 

Expressing the above relation in vector matrix notation we have: 

%/o = [3) x Phg/Q   zx x Phg/1    ...    z5 x Phg/5   z6 x Phg/6] 9 (3.22) 

The lower 3x7 block of the jacobian is written: 

[Jlower] =   [ib X Phg/0      ZX  X Phg/1       ...       Z5  X Phg/5      Z6  X P, hg/6 (3.23) 

The relation between the redundant freedom speed, 4>, and the 6 vector is developed in 
Section 3.2. This relation is presumed to take the form of a linear mapping, denoted in this 
report as a column vector in R7, $. Hence the 7 x 7 augmented jacobian is written: 

Kau^J — 

z0 Zi ... Z5 Z% 

ZQ X Phg/o     Z\ * Phg/1      • • •      25 X Phg/s     Z6 X Phg/6 (3.24) 

Several comments are in order. Each of the 49 entries in the augmented jacobian above 
is position dependent and therefore implicitly time dependent. Finally, the seventh row is 
not necessary for forming the forward kinematics. Its significance lies in forming the inverse 
kinematics. 

3.1.8    First Order Inverse Kinematics 

The structure of an augmented jacobian matrix was developed in the discussion of the first 
order forward kinematics.  The assumption was made that the ordinary jacobian matrix 
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could be expanded by the addition of a seventh row comprising a linear mapping from 
the joint speed to the redundant freedom speed. The development of this seventh row is 
discussed extensively in Section 3.2. For the purposes of the first order inverse kinematics, 
if the augmented jacobian is unsingular, then the inverse kinematics are written simply as: 

e = J-1 
"aug 

"hg 

Vhg 

4> 
(3.25) 

3.1.9    Second Order Forward Kinematics 

The formulation of the second order forward kinematics follows directly from the total 
time derivative of Equation 3.15, and the expression for the augmented jacobian given in 

Equation 3.24. We have: 

" Shg ' "hg  ' 

5hg d 
~ dt 

vhg 
= dt ^Jau9\ 

[    I    J L <t> J 

2    r J     i de _ e + [Jaug\ -£ - dt (Jau9\ 
6 + [Jang] 9 (3.26) 

The formation of the time derivative of the augmented jacobian matrix is laborious but 
straightforward. We begin by differentiating the upper 3x7 block described by Equation 

3.18: 

dt j4( J upper) — 
dzQ dz\ dz2 dz3 dz\ dz5 dz6' 

. dt dt dt dt dt dt dt J 
(3.27) 

Each of the Z{ vectors in the above is a unit vector of fixed magnitude and fixed direction 
within a link. Speaking qualitatively, the only way for this vector to change arises in the 
change of the orientation of the link in the global frame. The vector's time rate of change 
would then arise from the link's angular velocity. The relation for differentiating some 
arbitrary vector, q, across rotating reference frames is well known (Gl): 

^f\ = (*I) 
dt) global dt) local 

+ u X q (3.28) 

In the above equation, it must be understood that all vectors have been expressed in 
the global coordinate frame. The subscripts, global and local, refer to the perceived rate of 
change in two different reference frames. The above is simply a method for decomposing 
the total derivative into various- components.  This equation has immediate advantage in 
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this application because of the fixed magnitude and direction of S{ with respect to the ith 
coordinate frame resulting in: 

(#) local 
= o, (3.29) 

and therefore: 

dzi 
(3.30) 

Referring to Equation 3.16, we can write the time derivative of any Sj vector as: 

-£ = (2*001 + Z102 + Z2Ö3 + ... + Zi9j) X Zj (3.31) 

Distributing the cross product in the above and rewriting in vector matrix notation 
have: 

we 

dzj 

dt = [(3> x S-)   (Si x Sj)   (z2 x Sj)    ...    (Six zj)] 

Ox 

»2 

(3.32) 

Writing Equation 3.32 for each entry in Equation 3.27, and substituting the result 
Equation 3.26 for the angular portion only, we arrive at: 

in 

ahg ft] 

*oX SQ 

[0\ 02] 

ZQ X Z\ 

Sx xSi 

[01 02 03] 

ZQ X Z2 

Si X S2 

S2 x S2 
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[Öi... 9A] 

20 X 23 

Z\  X 2*3 

22 X 2*3 

23 X 23 

[Ö!...ö7] 

[ÖL..Ö5] 

20 X 2*6 

2i X 26 «1 

22 X 2*6 

2*3 X 26 
* 

24 X 26 

25 X 2*6 07 
2*6 X 26 _ 

2o X 24 

2*1 X 2*4 

2*2 X 24 

2*3 X 2*4 

2*4 X 2*4 

T [Jupper\ " 

[9\...96] 

ZQ X 2*5 

Zl X 2*5 

Z~2 X 25 

zz X 25 
2*4 X 2*5 

2*5 X 25 

. „ 

(3.33) 

Several comments are appropriate at this juncture. Firstly, the above expression is nonlinear 
due to the second degree, first order terms. Secondly, the calculation has become very 
intense. Thirdly, the above equation has exceeded the bounds of normal vector matrix 

notation. 

One can preserve the convenience of vector matrix notation by adopting several new 
conventions. First notice in Equation 3.33, that the entries in the matrix are not scalars 
as one normally expects, but vectors in Ä3. Given this, one notes that the shape con- 
vention under the premultiplication and summation from the left has been violated. This 
inconsistency can be resolved by requiring the following: 

1. The vector cross products in the matrix must be formed first. 

2. The multiplication from the left or "weighting" occurs second and distributes in a 
fashion such that each scalar entry in the row vector on the left is associated with a 

single vector resultant in the matrix. 

3. The summation of the weighted vectors occurs thirdly, and proceeds in the normal 
fashion for vectors in R3, the component of the result being the sum of the respective 
weighted components in the matrix. 

4. The multiplication and summation on the right occurs last and proceeds in the normal 

fashion. 

By adopting the above conventional adaptations, substituting Z{ X % = 0 at each oc- 
currence, padding elsewhere with zeros, and transposing, Equation 3.33 can rewritten as 

follows: 
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ahg = 

[ÖI...9T] 

2*0 X Z\ 0 

ZQ XZ2     Z\X Z2 

zo X 23    Z\ X z3   z2x z3        0 

20 X24    li X 2*4    22 X Z*4    2*3 X 2*4 0 

20 X 2S     2l X 25     «2 X 25     23 X 25     24 X 25 0 0 

20 X 26     2lX2*6     2*2X26     2*3X2*3     2*4X2*6     2*5X2*6     0 

0 0 

0 0 ■ 

0 «r k 

0 0 
\ 

0 0 *7 

-* 
0 0 

X 2*6 0 . 

T |V upperJ " 

(3.34) 

We proceed next with the translational terms by forming the total time derivative of 
the 3x7 lower jacobian given by Equation 3.23: 

Jt(Jlou,er)     =      \jt(Z0 X Phg/0)     -(li X Phg/1)     Jt(z2XPhg/2)      j(% X f^/j) 

jt(z4xPhg/4)   jt(£sxPhg/s)    i(^x^/6)| (3.35) 

Forming the total time derivative for a general term in the above we have: 

Jt(*i * 4,/i) = jt(?j) x Phg/j + % x Ti{Phg/j) dV 
(3.36) 

3.31: 
For the first term on the right hand side of Equation 3.36 we can simply apply Equation 

d - 
Jt{?i) x Phg/j = Oi(zo x ZJ) x Pkg/j + 02(*i x ZJ) x Phg/j + ... + 9j{zi x ZJ) x Phg/j (3.37) 

Let us expand Equation 3.37 for each of the first four terms of Equation 3.35 with 6 
factored out on the left: 
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d ( TI-4 
Tt(Jlower) Eq. 3.37       =     0 

hT 

0 (ij, X 5J X Phg/l (z0 X Z2) X Phg/2 (zb X 23) X Phg/3 
0 0 (zx x z2) x Phg/2 (z\ x z3) x Phg/3 

0 0                            0 (z2 x z3) x Phg/3 

0 0                             0                             0 
0 0                             0                             0 
0 0                            0                            0 
0 0                            0                            0 

(3.38) 

For the second term on the right hand side of Equation 3.36, we apply Equation 3.20 
and Equation 3.21: 

d ,* 
*i X J^Phglj) = % x [(ib*! + li*2 + • • • + 2j-\9j) X Phg/j} + 

Sj x {zjÖj+r x Phg/j + zj+19j+2 x Phg/j+1 + ... + z667 x Phg/6] (3.39) 

Let us expand the first term of Equation 3.39 for each of the first four terms of Equation 

3.35 with 9 factored out on the left: 

0   51 x (z0x Phg/1)   z2 x (50 x Phg/2) z3 x (5b x Phg/3) 
0 0 5'2x(51j<P^/2) z3 x & x Pjgß) 

0 5*3 X (z2 x Phg/3) 
0 0 
0 0 
0 0 
0 0 

dt(/lou;er)Eq. 3.39L        -     9 

0 0 
0 0 
0 0 
0 0 
0 0 

(3.40) 

The following vector identity can be used to combine Equations 3.38 and 3.40: 

((A xB) xC) + {B x(ÄxC)) = Äx(BxC) (3.41) 

Adding Equation 3.38 with Equation 3.40 via Equation 3.41 we have: 
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3? (^er)Eq-3.38+3.40    = 

Ö    20 X (fi X Phgfx)     ZQ X (z2 X Phgß) Z0 X (£3 X Phgß) 

0 0 2*1 x (2*2 x Phg/2) zx x (2*3 x Phgß) 
0 0 0 z2x(z3xPhg/3) 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 

(3.42) 

Finally, let us expand the second term of Equation 3.39 (Eq 3.39b) for each of the first 

four terms of Equation 3.35 with 9 factored out on the left: 

dt(*^ou>er)Eq.3.39R    — 

6 

z0 x ( 
20 X ( 

zo x ( 
ZQ  X  ( 

2*0 X ( 
2*0 X ( 

2o X ( 

(ZO   X   Phg/O) 

(21   X   Phg/l) 21   X 

(z2 X Phgß) ZX X 

(23    X    Phgß) ZX    X 

(24    X    Pkg/4) ZX    X 

(25   X   Phgß) ZX   X 

(26 X Phgß) 21 X 

24 X i^/4) 22 X (24 X t\gß) 23 X (24 X t\gß) 

ZS X Aj/5) 22 X (25 X PAa/5) 2*3 X (25 X Phg/5) 

26 X Phgß)     2*2 X (2*6 X P/»9/6)     23 X (2*6 X Pfcfl/6) 

(3.43) 

Equation 3.42 can now be summed with Equation 3.43 as the complete expansion of 
Equation 3.35. For the first four terms we have: 

—(I1-4 } = 
dV lower) 

T     =. 

" zo X ( 

zo X ( 

zo X ( 

zo X ( 

zo X ( 

zo x ( 

. *o X ( 

ZO   X   Phg/0 

Z\ X Phg/l 

Z2 X Phg/2 

Z*3 X Phg/3 

Z\    X    Phg/4 

ZS X Phg/S 

26 X Phg/6 

)    z0x( 
)   zx X ( 

)   zx X ( 

)   ?i X ( 

)   zx X ( 

)  *1 x ( 
)  *i X ( 

Z\   X   Phg/X) 

Z\ X Phg/l) 
Z2 X Phg/2) 
2*3 X Phgß) 

A X Phg/4) 
ZS   X   Phgß) 

'26 X Phgß) 

zo x( 
2*1 x ( 

2*2 x ( 

2*2 X ( 

2*2 X ( 

2*2 X ( 

2*2 X ( 

Z2 X Phgß) 

Z2 X Phgß) 
*2 X Phgß) 
ZZ  X   Phgß) 
Z\ X Phgß) 
ZS  X  Phgß) 
Z6 X Phgß) 

zo x (2*3 X Phgß 

2*1 x (2*3 X Phg/3 

2*2 X (2*3 X  Phgß 

2*3 X (2*3 X Phgß 

2*3 X (2*4 X Phg/4 

2*3 X (2*5 X Phg/5 

2*3 X (2*5 X Phgß 

3.44) 
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The above extends naturally to include all seven terms of Equation 3.35. Notice that 
the matrix is symmetric. The complete translational acceleration of the handgrip is now 

written as: 

Shg = 9 
iT 

zQ x (z0 x Phg/o)   z0 x (zi x Phg/i)   •••   z0x(z6x Phg/e) 
Z0 X (Zi X Phg/1)     2*1 X (zi X Phg/i)     ••■     21 X (26 X Phg/6) 

. ZQ x (z6 x Phg/6)   zx x (z6 x Phg/6)   ■■•   ?e x (z6 x Pkg/6) 

9 + [Jlower] 9 

(3.45) 

The acceleration of the redundant freedom and the differentiation of the seventh row of 
the augmented jacobian is discussed in the next section. However, since it is presumed that 

4> is a linear summation on 9, the second order relation should take the form: 

Tä ^> = eT[d(<f>)1 /de]e + <t>19 (3.46) 

3.1.10    Second Order Inverse Kinematics 

The second order inverse kinematics proceed directly from Equation 3.26: 

°-hg 

ahg 

4> 
dt(Jau3) 

1    r r     i d0 
9 + [Jang\ ^ dt(Jau5) 9+ [Jang] 9 (3.47) 

The solution proceeds from simple matrix algebra: 

0 = I-1 
°aug 

O-hg 
Shg - 

dt (JaU9\ 
0 (3.48) 

The above depends upon the total time derivative of the augmented jacobian. With the 
exception of the seventh row of the augmented jacobian, the time derivative was formulated 
in the preceding section. The formulation of the second order inverse kinematics also de- 
pends upon the existence of a nonsingular augmented jacobian. The augmented jacobian is 
discussed at length in the Section 3.2. 

3.1.i:l    Extended Kinematics 

All the kinematics developed in the Section 3.1 were aimed specifically at the handgrip, a 
particular point in Link 7. Any point in any link can be described by using the same basic 
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mathematics but reducing size of the matrices for links between the handgrip and ground, 
or if one wanted, by expanding the matrices for eight or more links. For convenience, all 
matrices for each link are compiled in Appendix A. For computer programming convenience, 
these matrices are all written to be multiplied by the dimension seven B vector. Hence they 
are extensively padded out with zeros, this makes for programming ease at the expense of 
computational speed. 

3.2    FORMULATION OF THE REDUNDANT FREEDOM 
KINEMATICS 

This section is devoted to the kinematics of the redundant freedom.   The study of the 
redundant freedom kinematics is desirable for two reasons: 

1) POSITION FEEDFORWARD: Knowledge of the position of the redundant 
freedom is not necessary for the forward kinematics of the handgrip. It is of 
course necessary to know the position of each link in the chain in order to know 
the pose of the handgrip, but it is not necessary to characterize the position 
of the redundant freedom by an additional parameter to specify the pose of 
the handgrip. However, if one is interested in controlling a slave robot with a 
seventh or redundant freedom, then a knowledge of the position of the redundant 
freedom in the master may be helpful for controlling the redundant freedom in 
the slave to the extent that a geometric correspondence exists between the two 
so that a command signal from the master can be applied to the slave. 

2) INVERSE KINEMATICS AND INVERSE DYNAMICS: In the discussion of 
Section 3.1, mention was made of the fact that the set of operator coordinates 
(handgrip pose and redundant freedom position) constitute a much more natural 
way for an analyst to describe the kinematic state than the joint positions. 
However the system inverse dynamics, (the expression of inertial forces and 
torques as a function of the kinematic state,) are much more easily manipulated 
and applied to motor control when the dynamics are written in terms of the 

kinematic state expressed in joint coordinates, $, 8, and 6). A transformation 
is then required from the operator coordinates to joint coordinates. Such a 
transformation requires a functional relationship between the redundant freedom 
parameter and the joint coordinates. 

In developing the kinematics of the redundant freedom, this section first concisely defines 
the redundant freedom motion, it then revisits some fundamentals of kinematics, and finally 
describes various analytic attempts to characterize the redundant freedom kinematics. 
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Figure 3.4: Ball and Socket Model 

3.2.1    Characterization of the Redundant Freedom Kinematics 

Figure 3.4 depicts a ball and socket representation of the exoskeleton kinematic structure. 
This representation is completely equivalent to that of Figure 3.3 except that the two in- 
stances of three intersecting revolute joints have been replaced by their kinematic equivalent 
of a ball and socket joint. Figure 3.4 emphasizes and aids in defining the redundant freedom 

motion capability. 

DEFINITION: Redundant freedom motion is defined as pure rotational mo- 
tion of a plane determined by the two coplanar jectors, zi and £|, about the 
instantaneous axis described by the unit vector V> which is collinear with a line 
determined by the proximal spherical joint which is fixed in absolute space, 
and instantaneous position of the distal spherical joint, which can translate in 
absolute space. 

Given that the motion is understood to be a rotation about the ip axis, the following 
questions must be asked regarding the mathematical representation: 

1) How are the redundant freedom kinematics characterized? 

2) Is the motion of the redundant freedom independent of the motion of the 

handgrip? 
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3) How many independent pieces of information are required to completely 
specify the redundant freedom position? 

4) How many of the components of 6 should be involved in the characterization? 

5) What sort of test is appropriate to assure that the characterization is accu- 
rate? 

In regards to Question 1, the argument of Section 3.1 based upon Griibler's criteria 
snowed that the overall mechanism possesses seven degrees of freedom. Specifying the 
position and orientation of the handgrip fixes six of the seven freedoms. Hence one freedom 
remains to be specified by a suitable choice of a generalized coordinate. Any parameter 
which determines the orientation of the upper and lower arm linkage about the vector tp 
wili characterize the redundant freedom. If one specifies the position of a point in the upper 
or lower arm, then the redundant freedom will be determined. Alternatively, in reference 
to Figure 3.3, if any one of the set, {z\,..., 25}, of joint axis vectors is specified, then the 
redundant freedom will also be determined (zio and z& are determined by the selection of 
the global coordinate frame and the handgrip pose respectively). Very many other choices 
exist to characterize the redundant freedom. 

In regards to Question 2, a qualitative argument exists that the motion of the handgrip 
and that of the redundant freedom are completely independent. It is clear by inspection 
that the pose of the handgrip can be fixed anywhere within the workspace, and that the 
linkage can be made to spin about the ip axis between the two spherical joints. It is also 
clear that the handgrip can be moving and that the linkage can still spin about the ^ 
axis. However in the case of handgrip motion, great care must be taken in the selection 
of generalized coordinate for the redundant freedom, for as the handgrip moves, the upper 
ball and socket joint will move and hence the ip vector will change its direction. This may 
cause a change in the value of the parameter specifying the redundant freedom even though 
the linkage has not rotated about the x/; vector. In this sense, mathematical coupling can 
be introduced and must be carefully monitored. 

In regards to Question 3, one can ascertain that one independent piece of information 
is required for the specification of the position of the redundant freedom. This follows from 
Griibler's criterion. However, one can make a separate but substantiating argument. The 
redundant freedom is specified by a rotation about a unit vector rp. Two parameters are 
required to specify ip. A third specifies the rotation about ij>. However, when the pose of the 
handgrip is determined, then ^ is also determined. Hence only one additional parameter 
need be specified. 

In regards to Question 4, for the purposes of this project, one would want to determine 
a functional relationship between the motion of the redundant freedom, and time rate of 
change of all seven of the B. Since we are concerned with actuator sizing and inertial 
compensation, if a change redundant freedom position results in a change in any of the 9 
then this should be taken into account. 
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In regards to Question 5, it follows from the previous arguments regarding the indepen- 
dence of the handgrip and redundant freedom motions, that at a minimum, a test should be 
able to demonstrate this motion independence, and do this at any point in the workspace. 
The test may have to include other information to be complete. Further investigation of 
what other information must be included, and hence the completeness of the test, was 
beyond the scope of this research effort. 

3.2.2    Illuminating Aspects of Differential Kinematics 

The analysis of Section 3.1 showed the functional relationship between the handgrip angular 

and translational velocity and the vector of joint speeds, 9, to be that of a linear mapping. 
The derivation was completely general and holds equally well for 9 vectors in Ä6 or in real 
vector spaces of higher dimension. The entries in the matrix are constants for an instant in 
time and are themselves highly nonlinear functions of 9. Nevertheless, at any instant, the 
functional relationship between the handgrip angular and translational velocities and the 
joint speeds is a linear mapping. 

In the previous section, the first order kinematics were derived from basic principles, the 
angular velocity addition theorem, and the relative translational velocity addition theorem. 
In each case, the fundamental relationship for the relative velocity of two bodies was that 
of a scalar weighting a vector in Ä3. It is important to note that the angular and transla- 
tional relations are completely independent and exist as simultaneous linear equations. The 
simultaneity and independence allowed the two sets of equations to be combined to form 
the jacobian without modification of either set of equations. 

It is also worth note that the for the angular case, the relative velocity relation necessarily 
stems directly and exclusively from a first order theorem, that is to stay that no zero order 
or pure orientation function exists which when differentiated, yields the angular velocity 
relation. This is not true for the translational case, where a position function can be 
differentiated to yield the translational velocity relation. If that approach had been adopted, 
the total derivative could have been found from the chain rule: 

dP dJLdh     Wdjh ,dP_d(h 
dt       80! dt + d92 dt+'"''  ee7 dt l*  ; 

-    dPi + dPß +        + *£*, 

where : 

P = f(9) 
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Again the relationship is seen to be a linear sum of the ^ on the 0, where the partial 

derivatives are highly nonlinear functions of 0 evaluated at an instantaneous position in 
time. 

Now let us examine the jacobian and augmented jacobian matrices derived in Section 
3.1 from the viewpoint of linear algebra. For the jacobian matrix, when 0 is in Ä6, if the 
mechanism is not in a singularity condition, then the jacobian has full rank, rank 6, and 
is invertible and useful for the inverse kinematics. If the mechanism enters a singularity 
condition which would occur if any three of the *• vectors become coplanar, or if any two 
z{ vectors become collinear, then the rank of the jacobian would be less than six. For the 
jacobian matrix, when 6 is in R7 the matrix has shape 6x7. Viewing this matrix as a set 
of column vectors in Re one sees that there are seven vectors and immediately concludes 
that one column vector must be a linear combination of the other six. Naturally the matrix 
is not invertible. 

Continuing in the same vein, we could consider expanding to seven, the dimension of 
the column space of the unaugmented jacobian by appending a zero to each column of the 
unaugmented jacobian. We can expand Equation 3.24 to have: 

"hg 

0 

ZO Z\ 

ZO X Phg/0     Z! X Phg/1 

0 0 
Zß X Phg/6 

0 
(3.50) 

While the columns now have dimension seven, they can still span only six space since 
we added only zeros. The seven column vectors remain linearly dependent. We have 
only six linearly independent vectors in R7 with which to span all of Ä7, a mathematical 
impossibility. A vector space in R7 or a null space of dimension seven exists which cannot 
be accessed as a weighted sum of the columns of the matrix in the above equation. This null 
space will have at least rank one^and will have greater rank if the unaugmented jacobian 

has rank less than six. A vector, 0nu//, exists which maps into the null space or equivalently 
weighs and sums the columns of the jacobian such that they do not access any portion of 
the subspace of R7 which they span. We can write: 

0 
0 
0 
0 
0 
0 
0 

zo Z\ 
?o X Pkg/0   zx x P, 

0 
hg/l *6 X Phg/6 

0 
'nu// (3.51) 

This has the immediate physical interpretation that a vector of joint speeds exists which 
causes the handgrip to remain motionless. The existence of such a vector is not surprising 
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since we know that the handgrip can be kept motionless while the upper and lower arm 
linkage is rotated about rf, and that at least some of the joints must move during such a 

motion. 

We can have only three physically possible exoskeleton motions, handgrip rotation, 
handgrip translation, and elbow or redundant freedom rotation about the instantaneous 
ip axis. These three motions are independent of each other. The motions are described 
by linear combinations over a real vector space, R7. Therefore we can conclude that the 

null vector, 0nu//, is that vector of joint speeds which if applied instantaneously to the 
exoskeleton, would cause the elbow to move while simultaneously holding the handgrip 
motionless, and similarly if the handgrip is held motionless while the elbow is spun, then 

the corresponding set of joint speeds is 0nu;j. 

Given the existence of the null vector, it is possible to decompose any vector, 6, into a 

component which moves only the handgrip, dhg, and a component which moves only the 

redundant freedom 9null. This follows from the fact that all of R7 comprises the range of 
the jacobian, and the orthogonal complement of the jacobian range, the null space. We can 

write: 

' 0 ' 
0 

"hg Ühg 0 

Vhg = Vhg + 0 
0 0 0 

0 
0 

0   0   0 

Jupper 

"lower 

0 0   0   0 
Ohg + 

0   0   0 

"upper 

"lower 

0 0   0   0 

1null 

(3.52) 

Thus it is seen that the entire exoskeleton motion is a superposition of the redundant 
freedom motion upon the handgrip motion, and that the two are completely separable. 
It is equally possible to separate the handgrip orientational motion from the handgrip 
translational motion. 

The work which remains is to find a vector, $, in R7 which expresses the redundant 

freedom motion as a function of 9. This function at a minimum must result in the augmented 
jacobian having rank seven. Additionally, it would be preferable to have the redundant 
freedom motion expressed completely independently from the handgrip motion. It was 
mentioned earlier that the motion of rf with the handgrip must be carefully considered 
because it could lead to mathematical coupling of the redundant freedom motion with the 
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handgrip motion. If a coupled motion is introduced, it could still expand the rank of the 
augmented jacobian to seven. However it will introduce an error in the results of the inverse 
kinematics. 

3.2.3    Strategies for Describing the Redundant Freedom 

First consider the zeroth order redundant freedom kinematics. The vector from the origin 
to the wrist spherical joint, P5/0, forms a plane with the global x axis vector, x0 It is useful 

to think of this plane as a vertical plane containing 0. The unit vector normal to this plane, 
nPiane is given by: 

Vane = — ^— (3.53 
11*0 X P5/0|| 

The vector z3, a unit vector, is fixed normal to the redundant freedom plane. The angle 
subtended by the z3 and np/ane defines the redundant freedom position. The magnitude of 
the angle is given by: 

|<£|=cos 1 (z3
T nplane) (3.54) 

The sign of the angle can be determined from the sign of the x component of z3. This 
algorithm will break down if P5/0 becomes parallel with x0. 

The discussion of the differential kinematics suggests two approaches to formulating the 
first order redundant freedom kinematics. The first approach Mows from considerations of 
translations motion. Kreutz-Delgado and Seraji adopted this approach (Kl). They argued 
that the translation^ velocity of a point in the elbow, p, can be described as a function of 
the joint speeds, while simultaneously, the translation^ velocity of a point in the reference 
plane described by a vector, q, which is normal to i> and also forms a plane with p, can 
also be described as a function of the joint speeds. The motion in absolute space of the 
reference plane and hence the projected point in the reference plane arises due to motion 
of the handgrip. The component of these translation^ motions normal to the elbow and 
reference planes is then found. The angular motion of the planes about the $ vector is 
then derived as the component of transnational velocity normal to the plane divided by the 
distance from the line containing the $ vector. The redundant freedom speed, 4> is then 
found as the difference between the two components (See Figure 3.5): 

'^''""'''"l^ffi)''' (355) 
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Figure 3.5: Kreutz-Delgado and Seraji Elbow Kinematic Construction 

This approach has fundamental flaws. To see this consider a situation when <f> equals 
90 degrees such that p, and q are normal to each other, the handgrip is rotating about the 
global XQ axis, and <j> equals zero such that the plane of the elbow linkage remains parallel 
to the horizontal plane. The first term above would equal zero since p would be normal to 
if x p. The second term would be non zero because V X q would be parallel to q, and q 
would have some finite value. Hence the mathematics tells us that <t> has a non zero value 
when we have created a situation where <j> must be zero. 

The flaws in the above approach arise from two difficulties. The first lies in the fact that 
redundant freedom motion is defined in terms of an instantaneous and fixed ip vector. This 
approach is attempting to allow a contribution to cj> from the reference plane and V motion. 
The second difficulty lies in the fact that the reference plane by definition is vertical and 
therefore while it can rotate about a vertical axis, it can have no component of rotation 
about a horizontal axis. 

No reason exists to expect that the foundation of the mathematical description of the 
redundant freedom motion in translational considerations is unsound. It merely implies 
that one has chosen to work from a different set of generalized coordinates. However, it 
must be remembered that the second order kinematics requires the time differentiation of 
the expression of the redundant freedom motion, and that this will at best be awkward, and 
be made more awkward by working from translations. It seems reasonable to expect that 
since the redundant freedom motion is a rotation, that a more easily managed approach 
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should lie in starting the analysis from a rotational viewpoint. 

In describing the redundant freedom motion from the rotational viewpoint, first consider 
that only Link 3 can undergo total redundant freedom motion. Redundant freedom motion 
is noted to be_pure rotational motion about a unit vector, $, which can have any direction 
in Ä3. Since V can point anywhere in Ä3, a link which can spin about it must have at least 
three rotational degrees of freedom between itself and ground. Starting from the base and 
moving outward, Link 3 is seen to be the first link which has these three degrees of freedom. 
Link 4 might be said to undergo redundant freedom motion, but only under the condition 
that 04 equal zero, since a non zero 0A would cause motion of the body within the plane 
which violates the definition of redundant freedom motion. The same argument applies for 
the other more distal axes. 

In maintaining a perfectly general approach, it must be recognized that $ can rotate 

as a result of a general vector of joint speeds, 0, and that Link 3 can undergo motions 
related to handgrip motion which are completely independent of redundant freedom motion. 
Rotational motion of Link 3 can be decomposed into components parallel and normal to the 
instantaneous vector, 0. The parallel component arises from redundant freedom motion, 
while the normal component is exclusively associated with handgrip motion. Hence we can 
write: 

=   ($T[z0    zx    z2    0    0    0    0]J)# (3.56) 

and 

4>=rjJT[z0    zx    z2    0    0    0    0] 0 (3.57) 

and 

$=$T[z0    zx    z-i    0    0    0    0] (3.58) 

Some additional qualitative discussion may strengthen the argument for excluding the 
distal links in the above formulation. Consider the case where a pure rotation of the 
handgrip about the distal spherical joint was desired. The vector of joint speeds would 
necessarily have the form: 

hgrot = [0   0   0   0   Me   «T] (3.59) 
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This being the case, if </>5, <f>e, and 4>7 were nonzero, then the $T 9 would be non zero, 
indicating redundant freedom motion jn contradiction to the desired pure rotation of the 
handgrip. The last three elements of $ must be zero. 

Finally, we must differentiate Equation 3.57 in order to complete Equation 3.26, so 
that the second order forward and inverse kinematics can be computed. Again the process 

proceeds by the chain rule: 

dtKV) 

-(rpT)[z0    Ü    z2    0    0    0    Ö] + £T|([3>    zx    z2    0    0    0    0]) 
dt (3.60) 

To differentiate $ we must first write tf in terms of the joint variables: 

^=__ii/o (3#61) 

(^f/o^/o)* 

The above can be differentiated by taking a deep breath and applying the standard rule for 
differentiating a quotient, in this instance the quotient of a vector over a scalar: 

I (u\ _ «(«)-«(*) (3.62) 
dt \v) v* 

To form the derivative of P5/0, Equation 3.21 can be rewritten for the Link 5 coordinate 

origin: 

1« ■ i^ 
=     ZQ6\ X P5/0 + 21*2 X P5/l + 22^3 X P5/2 + Z394 X P5/3 + zj5 X P5/4 
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= eT 

zo xP5/o 
Z\ *A/i 
h X A/2 
23 X P5/3 
z4 XP5/4 

0 
0 

(3.63) 

To differentiate the denominator term of Equation 3.61 we again use the chain and 
substitute the results of Equation 3.62: 

dt («0   = dt ((^T/oA/o)*) 

d.~ 
\{{P I/o A/o)"*] [|(P I/o) A/o + P l/o ft(Ps/o) 

jAPllo)P^lo\\{PlioPr>lo)-"\ 

2 Lv -  I/o A/o)  3] 2 I jt(P s/o)A/o 

üT 

=   0r 

?0 X P5/0 
21 x P5/1 

22 X P5/2 

2*3 X P5/3 

?4 X P5/4 

0 
0 

(20XP5/0)T 

(?lXP5/1)
T 

(22XP5/2)
T 

(23XP5/3)T 

(f4xP5/4)T 

0 
0 

^[(fl/o A/o)"* 

^5/0 

A/O 
A/0 
A/0 
A/0 

[( P 5/0 A/o) 
_1 

2 (3.64) 

Note in the above that when 0 was factored out on the left to form the scalar triple 
product before the weighting by 0 and summation, that we returned to standard vector 
matrix notation. The two notations will continue to be used interchangeably trusting to 
the reader to distinguish the intent. 
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Making extensive substitutions, we have the time derivative of Equation 3.60: 

s<* = 

z0 X P5/0 

Z\ X P5/1 

h x P5/2 

?3 X Ps/3 

£4 X P5/4 

0 

0 

[(^/o^]-« är 

(it) X P5/0) T P5/0 

(i*lXP5/l)TP5/0 

(i*2XP5/2)TP5/0 

(23xP5/3)T£>/o 

(z4x P5/4)T P5/0 
0 

0 

(Pj/oK/o) 

After some simplifications we arrive at a final expression: 

5<*- 

[(^Vo^/o)-"]A/o 

(3.65) 

0 ÖT 

((PTs,o A/o)-')* x P5/0 - (((£ I/o Ä/o)-*)((* x -P5/0)1, ?*/o)) A/0 

(( ^ I/O PS/o)'*)* X Ä/1 - (((^ I/O Ps/or'Wx X ^5/l)T Ps/o)) Ps/O 

((^5/0 ^5/0)-*)^ X P5/2 - (((P ?/0 Ps/o)'1)«^ X P5/2)T P5/o))P>/0 

((** J/0 ^5/0)-»)* X P5/3 - (((P I/o ft/0)"*)((% X P5/3)T P5/0)) 3/0 

((^5/0 JVC)"*)* X P5/4 - (((P 2)0 P5/o)-')((^4 X P5/4)T P5/o))P5/0 

0 

(3.66) 
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The above result is a vector in R3. The inner product of the above must be formed with 
the first three £; vectors, and with 0 four times, to yield the seven scalar components of the 
first term of Equation 3.59. To form the second term of Equation 3.59, we simply apply 
Equation 3.31 for each of the first three Z{ vectors: 

=   0 
dzp 

dt 

dz\ 
~dt 

~^   =   (zo0i + Z\0\) X z2 

{zQ9x) X 2X 

(3.67) 

The time derivative in the second term can then be rewritten as: 

jfl.%   z\    *2   Ö   o   0   0]) = 

0   i*o x z\   z0xz2 0 0 0 0 

0 0 2i x 22 0 0 0 0 

0 0            0 0 0 0 0 

0 0            0 0 0 0 0 

0 0            0 0 0 0 0 

0 0            0 0 0 0 0 

0 0            0 0 0 0 0 

(3.68) 

Note that the matrix in the above appears to be the transpose of the matrix for the 
first order terms in Equation 3.34, simply written for a more proximal link. This is not 
a contradiction. Equation 3.34 is written for a different purpose, the description of the 
second order angular velocity of one individual link, the handgrip. The above will yield the. 
desired 3x7 matrix describing the angular velocities of Link 1 through Link 3, if the new 
convention for vector matrix notation is strictly observed. 

All the requisite differentiation to perfect Equation 3.59 is now complete. The self 
contained expression will not be written here due to spatial constraints. However the reader 
should notice that the when all substitutions are made into Equation 3.59, that the result 
has the form of 3.46. 
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3.3    CLOSURE 

The preceding sections have illustrated the derivation from first principles of the complete 
kinematics of a seven degree of freedom serial link mechanism, which is being adapted to a 
force reflecting exoskeleton under this project. Several comments are appropriate in closing: 

• The derivation of the kinematics is an exceedingly tedious process. The derivation 
here was detailed as explicitly as possible because the results form the basis of the 
system dynamics and for a computer program both of which require greater levels of 
care for a successful result. 

• The derivation is completely general for the forward kinematics without redundant 
freedom parameterization. The expansion or contraction of the system equations to 
accommodate a larger or smaller number of links should be obvious by inspection. 
The parameterization of higher order redundant freedoms does not follow directly 
from the results developed here and will surely be labor intensive. 

• The second order kinematics are nonlinear in the second degree, first order terms. 

• A high degree of computational capability is required for programming and executing 
the kinematics. 

• A certain degree of symmetry is evident from examination of the formulations. Addi- 
tionally, there are many terms which can be expressed recursively from the formulation 
of more proximal terms. This can aid in program development and execution. 
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hapter 4 

DERIVATION OF THE 
EQUATIONS OF MOTION 

This chapter describes the derivation of the complete equations of motion for the exoskele- 
ton. Section 4.1 develops the inverse and forward mass dynamic formulation. Friction effects 
are not accounted for in the dynamic formulation. Section 4.2 describes the mass content of 
the Martin Marietta exoskeleton currently under development. Section 4.3 briefly describes 
the proprietary APL code developed under this program for the inverse mass dynamics. A 
more complete description is available as a separate proprietary report. 

4.1    FORMULATION OF THE MASS DYNAMICS 

4.1,1    Inertial Forces and Torques 

This section describes for a general seven degree of freedom serial linkage, the relationship 
expressing the forces and torques corresponding to a certain kinematic state as a function 
of the kinematic state, commonly referred to as the inverse dynamics. The results of course 
can be applied to the exoskeleton or any other seven degree of freedom serial linkage. 
As previously stated, the development of an adequate controller requires that a complete 
expression of the system inertia be included in the equations of motion. 

The derivation in this research effort employs the basic Newton-Euler methodology for 
rigid body dynamics as opposed to the LaGrangian approach. The Newton-Euler formula- 
tion allows the retention of the vector expression in Euclidian space of easily recognizable 
physical variables such as position, velocity, angular momentum and force. The vector ex- 
pression allows immediate physical insight into the system and hence aids in debugging the 
computer programming and discerning the more promising approaches to controller formu- 
lation. The LaGrangian formulation while more elegant and powerful has its foundations 
in energy considerations and therefore does not have this desirable transparency.   Both 
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formulations of course yield the same result. 

The approach to implementing the Newton-Euler mechanics rests in treating each link 
as an independent body, unconstrained by the other links. The force and torque required 
to maintain a given kinematic state of the subject link are then resolved using Newton's 
and Euler's equations. This approach is sometimes referred to as d'Alembert's Law, and 
the forces and torques are referred to as inertial forces and torques. The Newton-Euler 
approach requires the angular velocity and total acceleration, angular and translational, for 
a point in the link. These relations were developed in Chapter 3. 

Let us now consider the specific form of Euler's equation which will be applied in this 
project. Newton's second law for rotational motion, relating torque to rate of change of 
angular momentum is written as: 

where: 

T = the inertial torque vector of the body; 

£ = the angular momentum vector of the body; 

1 — the inertia tensor of the body; 

u = the angular velocity vector of the body. 

Applying Equation 3.28 to the above results in: 

f=(K£")W(^)L+**£"        (4-2) 

Now realizing that 1 is invariant in the body fixed coordinate system, the derivative in 
the right hand side can be expanded as: 

-<*l[(5<*>) 

local■ 

local. 
(4.3) 

Equation 3.28 can be applied once more to solve for the time derivative in the right 
hand side of the above: 

S=(±{ü)) =(1(05)1       +Oxu=(^-(ü)) (4.4) 
W*V Jalobal        \dtX       ') local \ dt ) iocal globi 
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The derivation of Equation 4.3 relied on the inertia tensor being expressed in a set of 
body fixed coordinates, and therefore the tensor must be mapped to global coordinates 
through a similarity transformation, in order to apply Equation 4.2. The transformation 
from principal axes coordinates to the global coordinate frame, is defined as: 

R* = Ä12....Ä- (4.5) 

where: 

Ru...i = the transformation from the Denavitt-Hartenburg link fixed axes to the global 
frame; 

Äf = the transformation from principal axes to the Denavitt-Hartenburg link fixed 
axes. 

For convenience, the equations of motion will be written about the center of gravity 
and the local, body fixed expression of the inertia tensor will be about the principal axes. 
Applying the similarity transformation, and taking advantage of Equation 4.3 and Equation 
4.4 allows the final, usable form of Equation 4.2 to be written: 

% = (^x[Ä*][ir][Ärr]^) + [Ä*][ir][Ä*T]a,- 

=   (üi x[Ii]u) + [li]&i (4.6) 

where: 

% — the expression in global coordinates of the inertia! torque vector for an equipolent 
inertia! force/torque system written about the center of gravity of Link i; 

w, = the expression in global coordinates of the angular velocity vector of Link i; 

I* = the expression in principal axes coordinates of the inertia tensor of Link i, written 
about the center of gravity; 

2, = the expression in global coordinates of the inertia tensor of Link i, written about 
the center of gravity; 

dj = the expression in global coordinates of the total angular acceleration of Link i. 

Considering the translational inertia! terms, we write Newton's second law relating forces 
to linear momentum: 
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* =  5(*)-5«*'l*> 

>> 

=   [Mi]jt(vi) = [Mi]äi (4.7) 

where: 

Pi = the expression in global coordinates of the inertial force vector for an equipolent 
inertial force/torque system written about the center of gravity of Link i; 

Vi = the linear momentum vector of Link i; 

Mi = the diagonal mass matrix of Link i; 

ä = the expression in global coordinates of the total translational acceleration of the 
center of gravity of Link i. 

In Equation 4.6 and Equation 4.7 the """ symbol has been introduced to denote a 
vector quantity in Ä3 which is specifically written for the center of gravity, and expressed in 
global coordinates. The upper case calligraphic "T " and "T " refer to inertial forces and 
torques as opposed to handgrip forces and torques, or motor torques which have the usual 
"/" and "r" designation. The reader is cautioned not to confuse the "T" with the "I", 
the latter of which represents the link inertia tensor as described above. Also note that 
unlike the translational acceleration, the angular velocity and acceleration have no origin 
dependence. The special "*" can be used interchangeably with ""*" for the angular terms. 
The """ is used on the angular terms simply to reinforce the notion of writing the inertial 
equations about the center of gravity. 

4.1.2    Actuator Mass Dynamics 

The development of the last section pertained to the fixed mass of the links and actuators, 
and incorporated the mass content of the actuators in both the mass matrix, and inertia 
tensor. This development omitted the possibility that the mass content of the links has the 
potential for motion within the local coordinate system. The principal potential contributor 
to this effect is the rotary motion of the actuator rotor or armature within the actuator 
housing. Since gear ratios in robot systems can approach 60 : 1 this effect can potentially 
be significant. 

First we must consider that the actuators are not always mounted upon the particular 
link which they drive, however their speed is directly related to the joint motions. We can 
rewrite Equation 4.6 for the actuators as: 
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M rotor     =     (*>*$*)+[*][<*%]$* 

Wrotor     =     (^X[/«][GÄ.]0^) + [/,][GÄ,]0 6'.- (4-8) 

where: 

[Aij = the expression in global coordinates of the torque vector required to act 
directly upon the ith actuator armature or rotor to drive the rotor at the specified 
kinematic state; 

u>j = the expression in global coordinates of the angular velocity vector of the link on 
which the ith actuator is mounted; 

C?ct = the expression in global coordinates of the angular momentum vector of the 
armature or rotor of the ith actuator; 

ü = the diagonal matrix of the rotor or armature rotary inertia for the ith actuator; 

GR{ = the diagonal matrix of the gear ratio of the ith actuator; 

Cj = the expression in global coordinates of the unit vector describing the rotary axis 
of the ith actuator in the jth link in which it is mounted. 

Note carefully in the above the distinction being made between the joint axis (i) which 
an actuator drives, and the link upon which the actuator mounts (j). The above expression 
is the torque required to drive the armature. The effect of this torque on the link upon 
which it mounts differs in the sign of the second term. The torque required to alter the 
angular momentum is the same for both. However the torque required to change the speed 
of the rotor along its shaft appears as a reaction torque upon the link and is opposite in 
sign. Therefore the torque which must act upon a link to drive the rotor at the specified 
state is written as:- 

Ai = {u>j x [Ji][GRi)?j 9i)-[Ji][GRi]Ci h (4.9) 

4.1.3    Static Transfer of Inertial Effects to the Joints 

In reality, the links constrain each other, and the joint motors or operator's hand supply 
the motive capability to drive the system inertia which is transmitted to each link through 
the joint structures. The application of d'Alembert's Law allows us to calculate the inertial 
effects and treat them as external forces applied to the links. D'Alembert's Law effectively 
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reduces the system to being in a state of dynamic equilibrium and allows further analysis 
through static considerations. In defining the terms of Equation 4.1 and Equation 4.2 
the word "equipolent" was used, meaning to have the same effect. This word was used to 
emphasize the notion that the forces and torques arise in the joints, but that their effect can 
be represented for any point in a link by a suitably adjusted system of forces and torques. 

We now wish to resolve the equipolent system of inertial forces and torques, universally 
written about the center of gravity of each link, to the joint actuators. Two approaches are 
available to formulate the relationship, statics and virtual work. Let us consider the static 
approach first. The method of sections stipulates that the stress resultants of any section 
taken through a body must balance the applied forces. If we select a circular section about 
a joint axis representing a joint motor, then we see that the stress resultant in this section 
must balance all the applied torques and all the torques resulting from applied forces from 
all points on the distal side of the section. Since torques are free vectors, the inertial torques 
transfer as their projection onto the joint axes. The effect of all inertial torques upon an 
individual joint, Jri, is written as: 

JTi = (?iT Tj) + &T ?j+1) + ... +(%T t7) (4.10) 

Forces are line bound vectors and they transfer to the joint as the projection onto the 
joint axis of the moment generated about the joint coordinate origin. The effect of all 
inertial forces upon an individual joint, Jfo, is written as: 

JTi = (ziT (Pjfi x fy) + (ziT (Pj+l/i x Fj+1)) + ...+(zJ (PT/i X ?7)) (4.11) 

Each joint is affected by the inertial forces and torques arising in the distal links, while 
the inertial forces and torques arising in the proximal links have no influence. The above 
result is general and can be applied to any type of applied force or torque. 

Referring to the second approach for resolving applied forces and torques to the joints, 
differential kinematics can be used in association with virtual work considerations. The 
theorem of virtual work states that the total work done in one set of generalized coordinates 
must equal the total amount of work done in any other set of generalized coordinates. 
Consider as an example, equating the instantaneous work done against the environment by 
the handgrip to the corresponding work done by the joint actuator torque, Jhg, in moving 
the joints. We write: 

[ Thg      fag      ] 
Uhg 

Vhg 
= [Jhg

T]e (4.i2) 
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Now consider Equation 3.15 relating joint speeds to handgrip angular and translation^ 
velocity, rewritten for the unaugmented jacobian: 

"hg 

Vhg 
(4.13) 

Substituting Equation 4.13 into the left side of Equation 4.12 we have: 

IV V 1 * = [fh.T)* (4.14) 

Since the 0 in the above equation are independent of each other, they can be cancelled 
on both sides of the equation. Performing the cancellation and transposing, we have: 

Jhg = JT 

. fh9  . 
(4.15) 

The above relation has completejjenerality, and could be written for any point in the 
mechanism or for any subset of the 9. 

The effect in the joints of the inertial loads for each link can be written in terms of 

the 0 by writing the forward kinematics of each link using the development of Chapter 3, 
calculating the inertial loads in absolute space by using Equation 4.6 and Equation 4.7, 
and then mapping the loads back to the joints using Equation 4.10 and Equation 4.11 
or alternatively the suitable form of Equation 4.15. As an example, the inertial loads of 
Link 7, the handgrip, will be written for Joint 1, represented by z0. Since in the controller 
development we are interested in the jelative magnitude of the second degree, first order 
terms of the generalized coordinates, 0, the first and second order terms in the generalized 
coordinates are written separately, and designated respectively by the one or two' symbols. 
For the first order inertial torque of Link 7 reflected to Joint 1, we have: 

7?   =    i^[z0    zx    z2    z3    z4    z5    z6]0jx([j7]  ([Z-Q    5X    z2    z3    £,    z5    z6}0^ + 
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W 

0 0 0 

z0 x Z\ 0 0 

ZQ X z<i    Z\ x 22 0 

0 0 

0 0 

0 0 

2*0 X 2*3     2*i X 23     22 X 23           0 0 

2*o X 2*4     2*i X 24     2*2 X 2*4     23 X 2*4           0 

2*o X 2*5     2*i X 2*5     2*2 X 2*5     23 X 2*5     24 X 2*5 

20 X 2*6     2*1 X 2*6     2*2 X 26     2*3 X 2*6     2*4 X 2*6     25X?6     0 

■ " 

0 0 

0 0 

0 0 

0 0 
9 

0 0 

Ö 0 

X 26 0 . 

(4.16) 

For the second order inertia! torque of Link 7 at Joint 1 we have: 

Tj"=[l7][z0      2i      2*2      2*3      2*4      2*5      26 ] 0 

(4.17) 

(4.18) 

^7/1 — Z0       ■'7 (4.19) 

Notice the manner in which the first and second order terms of the angular acceleration 
vector, a7, expressed by Equation 3.34 were separated and distributed to the first and 

second order inertia torque terms. 

The first order inertial force of Link 7 reflected on Joint 1 is written as: 

2o X (2o X PcgT/o)     2o X (2*1 X PCfl7/l)     • ' '     *b X (2*5 X Pcg7/6) 

20 X (2*1 X Pcg7/1)     2*1  X (2*1 X Pcg7/1)     ■■■     2*1 X (2*6 X Pcg7/6) 
F'7 = [M7] 3T e 

. 2*o X (2*6 X PC57/6)  21 X (26 X PCg7/6)     ■■■     26 X (2*6 X PCg7/6) 
(4.20) 

<7' -  ?   T   T' (4.21) 

where: 

Pc   K = the expression in global coordinates of the position vector of the center of 

gravity of Link j relative to the coordinate origin of Link i. 
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The second order inertia! force of Link 7 reflected on Joint 1 is written as: 

^" = [M7][z0xPcg7/0   iixPca7/1   Z2xPcg7/2   z3xPcg7/3 

?4 x Pcg7/4   f5 x Pcg7/5   z6 x Pcg7/6] 0 (4.22) 

J?ll\ - ZQ     s7 (4.23) 

4.1.4    Formulation of Gravity Loads 

To express the gravity effects on the exoskeleton at the joints we can take advantage of 
Equation 4.15. Writing a jacobian matrix for each link center of gravity we have: 

'cgl/O    = 

Jcg2/0    — 

zo 0   0   0   0   0   0 

2oXPCfll/0   0   0   0   0   0   0 

zo zx 0   0   0   0   0 

*o x Pcgl/0   zx x Pcg2/1   0   0   0   0   0 

'cg7/0     = 

z0 Z\ •••      z5 Z6 

ZO  X Pcg7/0     ZX  X Pcg7/1     • • •  Z5 X Pcg7/5     Z6  X Pcg7/6 
(4.24) 

For the coordinate system selected for the exoskeleton and displayed in Figure 3.3, 
gravity acts in the positive x0 direction. For gravity effects, the six dimensional load vector' 
Gi, for an individual link is written as: 

GiT = -[0   0   0   rmg   0   0] (4.25) 

where: 

m,- = the total mass of Link i; 

g = the acceleration of gravity. 
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The virtual work derivation of Equation 4.15 stipulated that the loads on the mechanism 
comprised loads which the mechanism exerted on the environment. Since gravity represents 
the environment acting on the mechanism, consistency requires the introduction of the 

minus sign in the above. 

In order to calculate the torque required to counteract gravity at each joint we simply 
sum the load of each link reflected back to each joint: 

J3rav = [ Jcgi,o
T }Öi + [ JC92/oT]G2+ ... + {Jcg7/o

T }Gi (4.26) 

4.1.5    Formulation of Human Interaction Loads 

The interaction loads between the human operator's arm and the exoskeleton are not well 
understood or quantified. For the purposes of characterizing the interaction loads, let us 
assume that the human can perfectly control the position in space of the bones of his hand 
and arm, and that these bones are perfectly rigid bodies. Then we can assert that the the 
bones are connected to the exoskeleton through the operator's flesh, and that the flesh acts 
as a spring (the virtual spring), and dashpot system. This system can be characterized by 
some general emperical observations: 

Compliance The flesh acts as a spring of unknown and most likely nonlinear stiffness. 
The spring rate will vary with location on the operator's arm and hand. Additionally, 
the bones are connected together by compliant ligaments which influence the overall 
system spring rate. 

Damping The flesh has considerable damping capability, being mostly water. Con- 
sider the almost total lack of response or bounce when a steak is dropped on a meat 
counter. The damping will vary with location on the operator's arm and hand. 

Time Variance Both the compliance and damping will vary with time. This time 
variance arises from two principal factors, the emotional state of the operator and the 
load on the operator's arm. When the operator is tense or fatigued, the muscles tend 
to stiffen and generally increase the stiffness of the arm system. Similarly, when the 
load on the arm system is high, the operator must tense his muscles and consequently 
render a higher stiffness. 

Pressure Distribution As the operator moves his arm, or as the direction of the 
load changes, the regions of flesh balancing the loads created in the exoskeleton will 
vary, and hence the stiffness between the exoskeleton and operator's bones. Consider 
a change of direction of a simple horizontal force acting on the operator's right hand. 
In one direction, the flesh across four knuckles of the fingers balances the load. In 
the opposite direction the flesh on a single knuckle in the thumb transfers the load to 
the bone. Additionally, the load distribution may change from the hand region to the 
elbow or other points of contact along the arm. 
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For the purposes of this study, the loads were assumed to be transferred from the 
exoskeleton to the operator exclusively through the operator's hand. If one makes the 
additional assumption that the relative rotation between the handgrip and operator's hand 
is small, then the rotations can be treated as independent and the Euler angle machinery 
can be avoided, allowing the interaction forces to be charaterized by a 6 X 6 diagonal stiffness 
matrix. Selecting a coordinate frame on Link 7 centered at the operator's hand, the loads 
developed in the virtual spring are written as: 

' spring 

/i spring 

KTX 0 0 0 0 
0 KTy 0 0 0 
0 0 Krz 0 0 
0 0 0 Ktx 0 
0 0 0 0 Kty 
0 0 0 0 0 

0   1 r snx i 
0 Süy 
0 6Slz 

0 6x 
0 Sy 

Ku\ I   6z   1 

(4.27) 

where: 

Krx = the rotational stiffness about the handgrip x^g axis, etc.; 

Ktx = the translational stiffness along the handgrip x^g axis, etc.; 

6QX = an infinitesimal rotation in a positive right hand sense of the bones in the 
operator's hand relative to the handgrip about the handgrip Xhg axis, etc.; 

6x = an infinitesimal translation along the handgrip Xhg axis of the bones in the 
operator's hand relative to the handgrip. 

The effect of the handgrip loads can now be expressed at the joints by applying Equation 
4.15. Recalling again that the derivation of that equation stipulates that the loads are 
those exerted by the exoskeleton on its environment, we note that for the exoskeleton the 
environment is the virtual spring and by examination Equation 4.27 also exactly describes 
the loads exerted by the exoskeleton upon the handgrip, given the strict observance of the 
definition of the variables associated with that equation. Substituing Equation 4.27 into 
Equation 4.15 we have: 

Jhg    = Jhg/O 
'hg/cnv 

Jhg/env 
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'hg/O 

Krx 0 0 0 0 
0 —Kry 0 0 0 
0 0 -Kr, 0 0 
0 0 0 —Ktx 0 
0 0 0 0 — Kty 
0 0 0 0 0 

4.1.6    Inverse and Forward Equations of Motion 

0    1 r Süx ] 
0 6ÜV 

0 6ÜZ 

0 Sx 
0 h 
Ku\ 6z  J 

(4.28) 

The effect of all loads at the joints has been described in the previous sections. To write 
the complete inverse equations of motion, we simply sum all the torques at the joints. Care 
must be taken for the appropriate sign of the contribution due to gravity and applied loads 
at the handgrip. These were denned as the torque required to be exerted at the joint to 
balance these loads. Therefore the motor must supply sufficient torque to balance these 
loads as well as to drive the system inertia We write: 

'motor =     3ha + Jt grav 

+ 

Ei=l ^Ti/1 

Et=l ^Ti/2 

Ej=l <?Ti/3 

Et=l ^Ti/4 + 

Ei=l ^Tt/S 

Es=l ^Ti/6 

£«'=1 ^Ti/7 

£»'=1 ^Ti/1 

E«=l 3Ti/2 

Et=l ^Ti/3 

Et=i 3Ti/A + 

Ei=l ^Ti/h 

Ei=l *^Ti/6 

E»=l <?Ti/7 

£«'=1 «^Ti/l 

Er=l «^Fi/2 

Ei=i «^ri/3 

E«=l «7F./4 + 

Ei=l •^•«/S 

Et=l «^Ti/6 

E.=l «^Fi/7 
. 

■ 

EL 7" 
1 ^«/l 

EL nil 
1 ^i/2 

EL nil 
1 ^i/3 

EL nil 
1 ^«/4 

EL nil 
1 *Vi/5 

EL nil 
1 *^./6 

EL nil 
1 «^»/7 

. 
(4.29) 

Thus, if the complete kinematic state, and the gravity and applied loads at the handgrip 
are known, then the motor torque required to balance the load is given by the above. 

For the forward dynamics problem, the expression of the joint accelerations as a function 
of the actuator torques, gravity, applied handgrip loads, and first order inertia! terms, we 
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reformulate the above in terms of the first and second order inertial terms and solve for the 
acceleration: 

JT + $T = Jmotor — Jhg ~ Jgrav ~ Jj ~ Jj (4.30) 

We wish to rewrite the left hand side of the above to make the 9. To do this within a 
reasonable about of space on the page, it will be necessary to introduce some new notation in 
relation to the inertial torque equations, Equation 4.18 and Equation 4.19, and the inertial 
force equations, Equation 4.22 and Equation 4.23. Examination of both pairs of equations 

shows that 9 can be factored out on the left of a 7 x 7 matrix. We write: 

Jl   =   [A}9 (4.31) 

J'Jr   =   [T]0 (4.32) 

Let us examine the torque terms to develop a suitable expression for the A,j. Expanding 
several terms of Equation 4.18 and Equation 4.19 shows: 

JTXX = ?oT [Zipo 0 0 0       0       0       O]0 

JT-21 = z0
T [l2][z0       *i       0 0       0       0       6]9 

Jf31 = z0
T [l3][z0       zi       22 0       0       0       0]9 

JTU = 5iT[Zi][0 0 0 0       0       0       0]! 

JT22 = ziT [l2][z0       z\       0 0       0       0       0]! 

JT32 = zx
T [X3][z0       z\       z2 0       0       0       0]9 

Jr\z = z2
T [li][0 0 0 0      0      0      0]! 

JT23 = z2
T [T2][Q 0 0 0       0       0       0]! 

JTS3 = z2
T [l3][z0       z\       h 0       0       0       0]!             (4.33) 

7 

A,j = *-ir 'ElWj-i (4.34) 

54 



For the force terms we expand several terms of Equation 4.22 and Equation 4.23 we 

have: 

J»n = 5bT[.Mipo><4i/o 0       0       0       0       0       O}0 

J£21 = z0
T[M2}[z0xPcg2/0 ?iXPcg2/1        0       0       0       0       0]l 

J'kx = ^oT[A^3][^xPca3/o ZlXPcgZ/1        ^^        0        0        0        0] 6 

Jr12 = 5iT[Mi][0       0       0 0       0       0       O]0 

J£22 = z1
T[M2)[z0xPcg2/0 ZiXpcflf!       0       0       0       0       0]I 

J>'32 = Z1
T[M3][zQXPcg3/0 ?lXPcg3/l           Z2XPcg3/2           0           0           0           0 ] ! 

J£13 = £2
T[>f1][0       0       0 0       0       0       O}0 

J?23 = ?2T[M2][Ö       0       0 0       0       0       0]! 

Jhz = z2
T[M3][z0xPcg4/0 ?ixPcg4/1       z2xPcg4,2       0       0       0       0]6 

(4.35) 

Tu = ZiS J2 [Mk\2j-i x Pcgkli.x (4.36) 

Equation 4.31 and Equation 4.32 can now be summed and substitued back into Equation 
4.30 to yield: 

JT + JT = [[A] + [*]]*' = Jrnotor ~ Jhg ~ Jgrav ~ JT~ J'T (4-37) 

Finally, the 9 can be isolated to arrrive at the expression for the forward dynamics which 
are dierectly integrable in terms of the 6: 

0 = [[A] + [T]] -1    [jmotor ~ Jhg ~ Jgrav - JT ~ J?\ (4-38) 
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4.2    DYNAMIC PARAMETERS OF THE SUBJECT MODEL 

This section tabulates the mass content, inertia properties, and motor characteristics of the 
Martin Marietta exoskeleton system. The mass content and inertia tensors are represented 
by approximate calculations based upon simplified geometries of the parts composing each 
link. All units are in System International. The centers of gravity are given in terms of the 
local, body fixed Denavitt-Hartenburg coordinate frame. The inertia tensors are calculated 
about the center of gravity of each link with coordinate axes aligned with the local body 
fixed, Denavitt Hartenburg coordinate axes. The motor rotor inertia is given at the rotor 
and at the joint, having been multiplied by the square of the gear ratio. It is illuminating 
to note the relative magnitude of the motor inertia reflected to the joint and inertia of the 
link itself. One must remember in making the comparison that the most proximal joints 
must actuate the inertia of all the distal links as well as the inertia of the proximal links. 

LINK    1 

PCgi{m) Mi{kg) ll(kg -m2) 

Ii(kg • m2) 

.000 7.243 0 0 .0404 0 0 

.038 0 7.243 0 0 .0158 .0190 

.126 0 0 7.243 0 .0190 .0246 

GR, [GRX
2] [h)(kg-m2) 

.0004      0 0 
0       .0004      0 
0 0       .0004 

60 0 0 
0 60 0 
0 0 60 

1.299      0 0 
0       1.299      0 
0 0       1.299 

LINK    2 

Pcg2(m) M2{kg) J2(kg • m2) 

.024 3.556 0 0 .0294 -.0003 .0066 

.079 0 3.556 0 -.0003 .0310 .0019 

.146 0 0 3.556 .0066 .0019 .0030 

I2(kg-m2) GR2 [GR2
2] [I2){kg.m2) 

.0004      0 0 
0       .0004      0 
0 0       .0004 

60 0 0 " 
0 60 0 
0 0 60 

1.299      0 0 
0       1.299      0 

0       1.299 

Table 4.1: Link Dynamic Parameters 
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LINK    3 

Pcg3{m) 

h(kg • m2) 

4.3E-5 0 0 

0 4.3E-5 0 

0 0 4.3E-5 

M3(kg) l3(kg • m2) 

-.003 1 3.968 0 0 .0087 .0012 -.0003 

.050 0 3.968 0 .0012 .0015 .0013 

.108 0 0 3.968 -.0003 .0013 .0084 

GR3 

100     0      0 
0     100     0 
0       0 100 

[GÄ32] [h}(kg-m2) 

.438 0 0 
0 .438 0 
0        0      .438 

LINK    4 

PC9A{™) 

I4(kg- m2) 

4.3E-5 0 0 

0 4.3E-5 0 

0 0 4.3E-5 

M4(kg) I4(kg • m2) 

.007 1 2.984 0 0 .0160 .0002 -.0018 

.068 0 2.984 0 .0002 .0202 -.0013 

.198 0 0 2.984 -.0018 -.0013 .0069 

GRA 

80 0 0 
0 80 0 
0 0 80 

[GR4
2] [h](kg-m?) 

0.280       0 0 
0       0.280      0 
0 0       0.280 

LINK    5 

Pcgs(m) 

h{kg • m2) 

3.6E-7 0 0 

0 3.6E-7 0 

0 0 3.6B-7 

Ms(kg) 

.003 " 1.995 0 0 .0040 0 0 

.000 0 1.995 0 0 .0080 0 

.000 0 0 1.995 0 0 .0040 

Is(kg ■ m2) 

GR$ 

60 0 0  " 
0 60 0 
0 0 60 

[GRs2][h}(kg-m*) 

.001 0 0 
0 .001 0 
0        0      .001 

Table 4.1: Link Dynamic Parameters (Cont.) 
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LINK    6 

Pcg6(m) 

h(kg • m2) 

3.6E-7 0 0 

0 3.6E-7 0 

0 0 3.6E-7 

M6(kg) 

.046 .748 0 0 .0005 -.0001 .0003 
-.003 0 .748 0 -.0001 .0006 .0002 
-.112 0 0 .748 .0003 .0002 .0002 

GRe 

60 0 0 " 

0 60 0 
0 0 60 

l6(kg • m2) 

[GRe2][Ie)(kg-m2) 

001 0 0 
0 .001 0 
0 0 .001 

Pcg7{m) 

I7(kg • m2) 

3.6E-7 0 0 

0 3.6E-7 0 

0 0 3.6E-7 

LINK    7 

M7(kg) 

.044 .435 0 0 .0002 0 -.0002 
0 0 .435 0 0 .0004 0 
.102 0 0 .435 -.0002 0 .0002 

GR7 

60 0 0 
0 60 0 
0 0 60 

l7{kg • m2) 

[GR7
2] [I7](kg-m2) 

.001 0 0 
0 .001 0 
0        0      .001 

Table 4.1: Link Dynamic Parameters (Cont.) 

4.3    BRIEF DESCRIPTION OF THE COMPUTER PRO- 
GRAM 

This section briefly describes the computer program for the dynamic model. It is described 
here because the run time results have some significance and it establishes the position for 
future research. 

The program was written in the APL programming language, Version Plus II for the 
80386 computer chip. APL was selected for its enormous power in handling arrays and 
systems of linear equations. The emphasis in the selection was in providing a convenient 
programming medium as opposed to developing especially efficient executable code.   As 
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things turned out the code executed with great rapidity. 

The code has the following attributes and limitations: 

Kinematics: The code includes complete zeroth, first and second order inverse and 

forward kinematics. 

Dynamics: The code includes the complete inverse dynamics. 

Motor Dynamics: Although the mathematics for describing the effect of the com- 
plete motor dynamics upon the system behavior is included in Section 4.1, code was 
not written to completely embody this effect. Only the second order contribution at 

the joint was included. 

Forward Dynamics: Although the mathematical description of the forward dynam- 
ics was included in Section 4.1, the code was not written for the forward dynamics. 

Applied Forces: Although the mathematical description of the static transfer of 
handgrip loads was included in Section 4.1, the code was not written for this transfer. 

Gravity Loads: Although the mathematical description of the gravity effect upon 
the links was included in Section 4.1, the code was not written for the gravity effects. 

Figure 4.1 displays the master batch execution file for the APL dynamics code. This 
description is sufficient to appreciate the most significant aspects of the programming prob- 
lems. The complete description of the APL code is available in a separate proprietary 

document. 

[0] SYS 
[I] fiTHIS FUNCTION IS A MASTER BATCH EXECUTION FILE 
[2] fi******* A*************************************************************** 
[3] ZROTMAKE fi FORM NEW SET OF Z ROTATION MATRICES FOR NEW THETAO 
[4] ROTATE fi FORM THE SET OF COMBINED ROTATION MATRICES 
[5] AXES A EXPRESS LINK X AND Z AXES IN GLOBAL COORDINATES 
[6] POSITIONS fi ORIGIN TO ORIGIN AND CENTER OF GRAVITY POSITION VECTORS 
[7] JACOBIAN fi FORM JACOBIAN MATRIX, AND FIRST ORDER INVERSE KINEMATICS 
[8] LINKVELOCITY fi CALCULATE THE LINK ANGULAR AND CG TRANSLATIONAL VELOCITY 
[9] ACLMATRIX A FORM THE LINK GEOMETRIC ACCELERATION MATRICES 
[10] ACCELERATION fi FORM LINK TRANSLATIONAL AND ANGULAR ACCELERATION VECTORS 
[II] LINKINERTIA fi CALCULATE THE INERTIA TORQUE OF EACH LINK 
[12] JOINTINERTIA fi CALCULATE THE JOINT TORQUE REQUIRED TO DRIVE THE INERTIA 

Figure 4.1: APL Batch File 

59 



The batch file consists completely of calls to APL subroutines. Each subroutine is briefly 
described in the following: 

Line 0 - SYS: This is the command which is invoked from the APL interpreter to 
cause execution of the entire file. 

Line 1 - ZROTMAKE: This function takes the vector of joint displacements, 6, 
and implements Equation 3.1 for each joint. 

Line 2 - ROTATE: This function forms the set of rotation matrices to map each 
link fixed coordinate frame to the global frame. It implements Equation 3.5. 

Line 3 - AXES: This function maps the expression of local x, and z, vectors to the 
global frame. 

Line 4 - POSITIONS: This function forms the set of expressions in global coordi- 
nates of vectors describing the position of each coordinate frame relative to all others. 
It also performs the same function for the center of gravity position vectors. This func- 
tion implements Equation 3.7 and its results are used extensively in all subsequent 
functions. 

Line 5 - JACOBEAN: This function implements Equation 3.24. 

Line 6 - LINKVELOCITY: This function calculates the expression in global co- 
ordinates of the angular and center of gravity translational velocity for each link. It 
implements Equation 3.16 and the suitable form of Equation 3.23 for each link center 
of gravity. 

Line 7 - ACLMATRIX: This function assembles the complete set for all links of 
the angular and translational acceleration matrices as described by Equation 3.34 and 
Equation 3.45. 

Line 8 - ACCELERATION: This function calculates the total acceleration for 
each link by reforumlating Equation 3.34 and Equation 3.45 for for each link. 

Line 9 - LINKINERTIA: This function calculates the expression in global coordi- 
nates for the inertial force and torque vectors for each link by implementing Equation 
4.6 and Equation 4.7. 

Line 10 - JOINTINERTIA: This function calculates the torque required to be 
exerted against each joint to drive the system inertia at the specified kinematic state 
by implementing Equation 4.10 and Equation 4.11 for each joint. 
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Chapter 5 

CONTROLLER FORMULATION 

This chapter describes the approach to simulation and controller formulation. One motivat- 
ing consideration of this program was to determine an analytic or predictive methodology 
for evaluating the controller effectiveness as opposed to expensive empirical approaches 
on actual hardware systems. Since simulation necessarily requires some interaction with 
the environment, and since this interaction in turn affects the system dynamics, it is only 
reasonable to formulate a simulation approach before attempting a controller formulation. 
Given the simulation approach described in Section 5.1, the approach to controller formula- 
tion is described in Section 5.2. Several approaches to enhanced management of the control 
of the redundant freedom are discussed in Section 5.3. 

5.1    SIMULATION METHODOLOGY 

A method is sought to evaluate a controller before implementing the controller in actual 
hardware. Two immediate options present themselves: 

Pole Placement and Pole Loci Studies Various techniques exist for performing 
pole placement for feedback control systems based upon the desired steady state error, 
desired transient response, and expected type of input command signals. Realizing 
that the system is time varying, the location of the poles will change with among 
other things, the inertia reflected back to each joint, and the interaction spring rate 
between the handgrip and the bones of the operator's hand. If the loci of the poles 
were established for all a reasonable set of expected conditions, and these loci were 
found to be acceptable, then one might have reasonable grounds to proceed with 
the purchase of controller hardware. This method is rather inexpensive, but cannot 
anticipate all possible system conditions. 

Pole Placement and Time Domain Simulation Given a method for placing 
the controller poles, then the effectiveness or quality of the controller design can be 
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observed by time domain simulation. Time domain simulation allows the observation 
and response for all possible inputs and system conditions. It tends to be expensive 
in that it consumes a great deal of computer power. 

For the purposes of this study, time domain simulation was chosen because the expected 
set of system conditions and inputs is very large, and the simulation results should provide 
a more universal and exhaustive test. 

The simulation methodology developed is termed the "virtual spring" technique. The 
technique parallels the description in Section 4.1 pertaining to human interaction loads. 
Essentially, the bones of the operator's hand are considered as ground. The physical man- 
ifestation of the controller's objective of exerting the correct force and torque against the 
operator, is to compress and twist the spring described in Equation 4.27 by the proper 
amount, according to the force and torque command sent back from the slave manipulator. 
A similar formulation was adopted for controlling the redundant freedom motion, whereby 
an imaginary spring connected the elbow of the exoskeleton to the exoskeleton elbow. It is 
understood that the operator places his hand and elbow where he desires, and the controller 
will cause the mechanism to follow the operator's path and also exert the proper force and 
torque against the operator. 

With this basic approach, the exoskeleton system can be viewed as having fourteen 
input commands, and seven output responses. The input commands comprise the three po- 
sition components of the operator's hand bones, the three orientational components of the 
operator's hand bones, the position of the operator's elbow bone, the three force feedback 
commands, the three torque feedback commands, and the force or torque to be exerted 
against the operator's elbow. The set of seven output responses comprise the three com- 
ponents of force and the three components of torque exerted against the operator's hand, 
and the force or torque exerted against the operator's elbow. A perfect controller will 
compress all seven springs by exactly the appropriate amount at all instances of time, in- 
dependently of the motion of the operator. The formulation of this approach to simulation 
introduced the virtual spring concept. The presence and characteristics of the virtual in- 
teraction springs influence the system behavior, and hence requires that they be accounted 
for in the controller design. 

Given a controller design the system simulation proceeds by calculating a torque re- 
sponse according to the control law and the current state of the system. The generated 
torque is applied to the system via Equation 4.38 which describes the forward dynamics. 
The resulting acceleration is calculated, and integrated to describe the resulting system 
kinematic state. Of particular interest in monitoring the simulation is the amount of spring 
compression, and the actual torque demanded of the actuators. If the springs are com- 
pressed by the nearly the correct amount at all instances in time, then the controller will be 
said to have good fidelity. Actuators are often sized and purchased based only upon static 
load considerations. A more complete approach also includes inertia! loads. The completely 
exhaustive approach would be to size an actuator based upon the torque called for by a 
controller in achieving the actual system performance. It is likely that the controller may 
request torques which momentarily exceed those based upon anticipated loads for static 
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and inertial considerations. 

The controller simulation was set up to run on the ADAMS dynamic modelling and 
simulation system. This system was chosen because of the its built in integration capabil- 
ities, and because of the experience that the analyst had accumulated with the product. 
The simulation package completely embodied Equation 4.38, the environmental interaction 
described in the preceding paragraphs, and the controller described in Section 5.2. 

5.2    CONTROLLER FORMULATION 

This section describes the controller formulation for the exoskeleton and the associated sys- 
tem parameters. A classically based approach was taken despite the limitations previously 
cited for such systems. This selection was made because of resource limitations. 

5.2.1    Formulation of the Classical Controller 

The approach to classical control rested upon assuming that each joint could be treated 
as an independent, linear, lumped, spring-mass system as depicted in Figure 5.1. This 
approach required the following additional formulations: 

• A classical controller embodying an interaction or virtual spring must be written for 
the general motor model, 

• The interaction spring between the human and the handgrip must be expressed in 
terms of its effect at the joints, 

• The effective rotary inertia must be expressed at each joint. 

First let us consider the controller formulation. The goal of the system controller is to 
exert the appropriate force and torque against the human operator. This can be achieved 
by either torque controlling the motors or position controlling the motors against the virtual 
spring. Torque controlling the motors basically implies controlling the current in the motor 
armature. Position controlling the motors requires the introduction of the effective virtual 
spring at the joint, and the incorporation of the spring into the equations of motion for the 
motor. The latter approach was adopted simply because the position control of D.C. motors 
was more familiar to the researchers, and because ultimately the forces and torques exerted 
against the operator are manifested by a compliance or change in length. Ostensibly, nothing 
is wrong with torque controlling the motors, and this approach may be more effective from 
a computational viewpoint since the position control requires the calculation of yet another 
set of parameters, namely the displacement of the virtual spring about its free length. 
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EQUIVALENT EFFECTIVE SPRING AT JOINT - K. 

EQUIVALENT ROTARY INERTIA AT JOINT - lr 

JOINT MOTOR 

Figure 5.1: Motor Model 

Let us recall Equation 4.27 expressing the loads exerted by the handgrip against the 
environment or equivalently the virtual spring, and expand it to account for the elbow 
torque about t/;: 

'hg/env 

Jhg/env 

Telb 

KTX 0 0 0 0 0 0 
0 — Kry 0 0 0 0 0 
0 0 -Krz 0 0 0 0 
0 0 0 —Ktx 0 0 0 
0 0 0 0 -Kty 0 0 
0 0 0 0 0 -Ktz 0 
0 0 0 0 0 0 —Kr%i, 

—   [—Kenv] 

6Slx 

Stly 
snz 
Sx 
6y 
6z 
6<f> 

6QX 

6£ly 

snz 
Sx 
6y 
6z 
64> 

(5.1) 
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The simulation methodology stipulates that the position and orientation of the bones of 
the operator's hand must be designated as an input command, Pcmd and Rcmd- Since the 
operator's hand wraps about the handgrip, it is permissible to assume that the operator's 
hand, and the exoskeleton handgrip are concentric bodies and therefore share the same 
position in space and orientation when the virtual spring is uncompressed or resting at its 
free length. Therefore we can employ the inverse kinematics to determine a vector of joint 
angles corresponding to no load: 

0/ree = fik [ Pcmd Rcmd <f>cmd J (5.2) 

where: 

fik = the numerical functional for the inverse kinematics. 

To find the joint position command corresponding to both the force feedback loading 
command and the operator position command we then have: 

"cmd — "free + [VaugJ       I    -"enuj 
1-1 

Tfig/env—cmd 

Jhg/env—cmd 

Telb/env—cmd 

(5.3) 

The elements of #„„<* cannot be used directly as joint motor position commands, because 
the effective spring at the joint does not have an absolute origin, but one which floats with 
the mechanism position and orientation. The spring is to be compressed or extended locally 
about whatever overall mechanism the operator selects. Therefore the new variable, ■& is 
introduced which represents the local behavior about the operator position command point: 

ti = 9-6fT (5.4) 

The above formulation is permissible only in the simulation and is not ap- 
plicable in an actual controller. This is because the operator's hand position and 
orientation are given, while the actual exoskeleton system has no way of determining this. 
The general approach can be modified by incorporating some form of force sensing into the 
exoskeleton mechanism, either at the handgrip and elbow or at the joints. Let us assume 
that the force sensing is incorporated at the handgrip and elbow. We can calculate the 
proper position command for the actual exoskeleton system as follows: 

65 



"and — "inst + [Jaug]       [—Kenv] 
-1 

'kg/env—cmd ^kg/env—inst 

Jhg/env—cmd Jhg/env—inst 

'elb/env—cmd ~ ^"ebl/env—inst 

(5.5) 

where: 

öinst = the vector of instantaneous joint positions, a measured set of values, 

Thg/env-inst = the instantaneous torque vector which the exoskeleton exerts on the 
environment, a measured value, 

fhg/env-inst — the instantaneous force vector which the exoskeleton exerts upon the 
handgrip, a measured value, 

Telb/env-inst = the instantaneous scalar torque exerted about i\> by the elbow on the 
environment, a measured value. 

With the variables properly denned, we can now consider the type of position controller 
desired. The controller at a minimum will incorporate a simple proportional term. This 
term should be rather large to have fast response. Making the qualitative observation that 
the system as currently modeled has nothing but springs and mass, with minimum damping 
from the back emf constant in the motors, we would expect the system to be highly oscilla- 
tory especially with the high proportional gain. Therefore, some differential or tachometer 
feedback should be incorporated. The human does not have great sensitivity in resolving 
exact loads. For example the human has difficulty discriminating between 12 and 13 pounds 
when held in his hand. Therefore absolute accuracy is at first examination not greatly val- 
ued, and an integral term would not appear to be worthwhile in the controller. The first 
cut controller was therefore taken as proportional plus derivative with fixed feedback gains. 

Let us now write the controlling equations for a D.C. servo motor. For the electrical 
considerations we have: 

V = Ri + (kbemf + D)jt{d) + Ljt(i) (5.6) 

where: 

V = voltage across the motor [volt], 

R = resistance of the motor armature, [ohms], 
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i = current in the motor armature, [amps], 

hem} = motor back electro motive force constant, [volt • sec], 

D = derivative controller weighting constant [volt ■ sec], 

L = motor inductance [henry]. 

Note how the derivative feedback, D, term is introduced. It is assumed that a tachome- 
ter or differentiating element can be inserted about the motor in parallel with the back 
electromotive force constant. For the mechanical considerations of the motor we have: 

GRkmoti = Jrot^W + GRkJriejt{t) + kspgd (5.7) 

where: 

GR — gear ratio of rotation of motor shaft to rotation of joint, 

kmot = the motor torque constant N-n 
amp 

Irot = effective rotational inertia at the joint [kg • m ], 

kjric = mechanical viscous friction constant [N • m • sec], 

kspg = effective virtual spring at the joint [N ■ m]. 

Forming the Laplace transform of Equation 5.5 and Equation 5.6 and combining to 
eliminate i, the feedforward transfer function from the applied voltage to the motor angular 
position is written as: 

e(*)_ 
V(s) 

GR kmot 
Ls3 + {IrotR + GRkfTicL)s2 + (GRkmotkbemf + GRkmotD + GRkjricR + Lkspg)s + Rkspg 

(5.8) 

It is common to disregard the motor inductance because of its relatively small size, thus 
reducing the feedforward transfer function to: 

M-^,) GRkmot       (5<9) 

V(s) "    K '     IrotRs2 + {GR kmothemf + GRkmotD + GRkfricR)s + Rkspg 
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Making the applied voltage, V(s), proportional to the difference in command angle and 
actual angle by a constant Kpro(^) the closed loop transfer function, H(s), relating output 
position to input position is written: 

H(s)   = 
Gout(s)        G(s) 
Qin(s)      1 + G(s) 

GRkmotK' pro 

IrotRs2 + {GRkmotkbemf + GRkmotD + GRkfricR)s + Rk3pg + GRkmotK^ pro 

Cj/t kmot J* pro 
 IrotR 

„2   i   (GRkmotkbem,+GRkmo,D+GRktricR) _       RkapQ-rGRkmotKpro 
S    + IrotR S+ IrotR 

(jit lSmot-"-pro 

RkSpg + GRkmotK. pro 

Rk,pq+GR kmot fipro 
 IrotR  

s2   ,   (GRkmotkbem,+GRkmotD+GRkfTicR) Rk,v<,+GRkmotKvro 
IrotR IrotR 

(5.10) 

Equation 5.9 represents a well known second order transfer function, the transient re- 
sponse of which is well understood [01]. Rewriting we have: 

H(s) = A 
Kqai 

/rot 
n 

S2 + * damp 
/rot + I rot 

= A 
w; 

s2 + 2(uns + u>l 
(5.11) 

where: 

A = öt—.r^Bu pT\r—> a dimensionless number, ff-Kapg+LtnKmott\pro ' 

ly-     Rkapa+GRkmotKpro 
■n-gavn — R i 

N-m 
rad 

JP —   (GR kmot kBtmf+GR kmotD+GRkfruR)     f »r l 
•»aamp — /j j [,-<»  ' «* " SeCJ 

u" =   j^'t" > the undamped natural frequency U^y , 

C = o /rd<"^p     »tne damping ratio, a dimensionless number. 
2^irot«ooin 

In designing the controller, or equivalently selecting the parameters, Kpro, and D, one 
must take into account the expected input. For the sake of simplicity, the controller was 
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designed around step inputs. In general, the step input is harder to track than a ramp type 
input, so therefore the design should be conservative. Additionally, step inputs can be said 
to characterize a large set of realistic inputs arising from the slave manipulator suddenly 
contacting the environment and developing a load. The step input was therefore taken as 
a reasonable starting point for the design. 

Good force feedback fidelity can be interpreted as very fast, nonoscillatory response. As 
a starting point for the controller design, a very fast, critically damped, response appeared 
desirable. Selecting ( = 1, for critical damping, we have for the time domain response for 
a unit step input to the system characterized by Equation 5.10: 

0out(t) = A[l-e-u"t(l+unt)} (5.12) 

To achieve the desired output, 0cmd would have to be scaled by A. 

Selecting a very fast response time of 0.1 sec to four time constants we have: 

(Wn[-L])(0.1M) = 4 

wn = 40 
sec 

fla.n=(l600[^])(/rot[A:5-m
2]) K, 

KpT0 [volt] = 
(1600 [^1)(Irot [kg • ml)(R fe]) - (R Kl)(*„, [ffi|) 

GRk, mot 
N-m 
amp 

(5.13) 

(5.14) 

With C = 1» we have: 

i jam Fdamp     =     2yIrotKg (5.15) 

(5.16) 

Solving for D, we have: 
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D [volt • sec] = 

1 

—GR (kmot 
N ■ m 

(80 
N • iec 

.    kg ■ m 
)(/rot[kg.m2])(Ä 

amp 
) (hemf [V-~c])-GR (kfric [ N • m • sec]) (R  | —1 ) (5.17) 

We now have closed form expressions for both adjustable controller parameters, Kpro 

and D. Some discussion of the overall controller design is now appropriate. Examination 
of Equation 5.12 reveals that for a fixed natural frequency, as one would expect, the overall 
gain must be increased as the system inertia increases to maintain the same response. This 
suggests that for the purposes of proportional gain selection, the system inertia should be 
evaluated at the worst case extension of the exoskeleton to assure adequately fast response 
over the entire workspace. 

Examination of Equation 5.14 and the definition of the damping ratio, £, under Equation 
5.15, reveals that if Fdamp is fixed at the maximum value of the system inertia experienced 
at the joint, ITOt, then C will actually increase as the inertia decreases, adding stability to 
the system at the cost of sluggish response. It is not immediately apparent by examination 
of the equations that the increase in Kpro will overcome the increase in £. 

Now consider the effect of k3pg, a parameter whose value will vary with exoskeleton 
position and operator physiology. Examining the variation of kspg with position only sug- 
gests that the spring will appear stiffest at full exoskeleton extension when a small angular 
deflection at the joint will result in the largest translational deflection at the handgrip and 
hence the greatest resulting force. Examination of the definition of Kga{n shows that with 
Kpro fixed in magnitude, Kgain will decrease as the spring rate experienced at the joint 
decreases, leading to slower response. 

Further analysis would be required to determine the combined effect of the variations 
of Irot and kapg on Kgain and Fdamp- However at first examination, it appears reasonable 
to first attempt to design the controller around the point of maximum exoskeleton inertia 
corresponding to maximum extension. 

5.2.2    Formulation of the Virtual Spring at the Joints 

We wish to postulate values for the virtual spring, Kenv, and evaluate the effect of the 
virtual spring at the joints, ktpg. As a very crude approximation to the compliance the flesh 
at the hand, a ruler was pushed against a researcher's relaxed palm with a measured load. 
The flesh was seen to compress at a crude rate of: 
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Kt, = Ktv = Kx, = 4500 l«y -1 (5.18) 

Assuming that this spring rate was good over all points in the hand, the torsional rate 
was developed by assuming that a pair of springs acted at equidistant points from the center 

of the palm to yield: 

K„ = Krv = Krz = 360 Lry 
N • m 
rad 

(5.19) 

The elbow torsional spring, Krrj, must be formed by imagining one of the translationaJ 

springs, Ktx to be placed at the elbow, such that the resulting torque about the vector rp 
can be formed from the displacement of the spring and the moment arm from the elbow to 
the line containing iß. Its value is seen to be dependent upon the mechanism position. For 
the sake of simplicity, an average number was taken as: 

Krj, = 500 
N • ml 
rad 

(5.20) 

Given these very rough values for the virtual spring at the hand and elbow, one must 
now consider the effective spring rates at the joint. Recalling Equation 4.15 and expanding 

to include the elbow torque we have: 

Jhg J     T 

T
hg 

fhg 
Telb 

(5.21) 

We now postulate an equivalent spring matrix, Kequ, such that: 

Jhg = [-#e,u]tf (5.22) 

Substituting Equation 5.1 into Equation 5.20 yields: 

Jha J     T 

T
hg 

fhg 

Telb 
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7     T 
"axig 

#1234567 0 0 

0 #1234567    0 
0 0 1 

[—Kenv] 

SSly 

6x 
6y 
Sz 
6<t> 

(5.23) 

The 7x7 matrix premultiplying Kenv and containing the rotation matrices maps the 
local expression of loads on the handgrip to the global frame for mapping to the joints via 
the jacobian. This is necessary because the environmental spring is defined in terms of 
coordinates fixed in the handgrip. 

Considering Equation 3.25 to applicable for differential motions and substituting into 
the above we have: 

Jhg J     T 
"aug 

Rl 234567 0 0 

0 #1234567 0 
0 0 1 

#1234567 0 0 

0 #1234567 0 
0 0 1 

[-Ke 

Ja ug 0 

(5.24) 

Once again the transpose of the composite rotation matrix has been introduced pre- 
multiplying the jacobian to map the global differential motions to the handgrip coordinate 
frame. 

Equation 5.20 can now be equated to Equation 5.22 to yield: 

[ Kequ ]   = J     T 
R 1234567 

0 
0 

0 
-^1234567 

0 

0 
0 
1 

Ke 

RT 
■"■1234567 

0 
0 

0 

■"'1234567 

0 
taug 7? 

(5.25) 

Unfortunately, Kequ is certainly not diagonal, a fact which poses a severe challenge to 
the simplifying assumption that the motors can be treated as seven independent systems. 

72 



Nevertheless, the further simplifying assumption was made to take the diagonal elements 
of Kequ as the local torsional spring at each respective joint. Note in the above that once 
again the augmented jacobian matrix was required, and that the position dependence of 
the local spring was introduced through the jacobian. 

5.2.3    Formulation of the Effective Inertia at the Joints 

Continuing with the assumption of seven linear, independent, constant parameter systems, 
the simplified inertia can be evaluated by ignoring all the first order terms of the dynamic 
model and considering only the second order terms. Recalling Equation 4.37 for the com- 

plete inverse dynamics we have: 

JT + J? = [[Al + [T]]^ = ^otor - Jhg ~ Jgrav ~ Jj ~ 3'T (5-26) 

Setting all the terms on the right hand side equal to zero, performing the summation 
on the left hand side and setting all the off diagonal terms in A and T to zero under the 

independence of joints we have: 

The hot terms can be found by evaluating the A and T terms directly, or by exercising 
the computer model by applying a unit angular acceleration to one joint while holding all 
others joints fixed and observing the calculated torque required to sustain the acceleration. 
This latter method was conveniently employed for the controller development. 

5.3    REDUNDANT FREEDOM CONTROL STRATEGIES 

This section briefly describes some of the control strategies for the redundant freedom. Two 
strategies are readily apparent: 1) torque control of the elbow about V, and 2) position 
control by the operator with damping in the null space for stability. The two approaches 
are discussed separately in the following. Many other approaches may be found in further 

research. 

5.3.1    Torque Control of the Redundant Freedom 

The previous section laid the analytic framework to implement torque control of the redun- 
dant freedom or elbow motion. In this mode the exoskeleton elbow behaves in a manner 
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completely analogous to the handgrip: the operator positions a particular portion of his 
anatomy at will, and the controller acts to exert the prescribed load against the operator. 
The only difference between the handgrip and the elbow control is that the handgrip load 
command is understood to be a load feedback signal from the slave manipulator while the 
elbow torque command is a synthetic command generated to hold the exoskeleton elbow 
against the operator's elbow at an appropriate level of operator comfort. 

5.3.2    Position Control with Damping in the Null Space 

The implementation of force/torque control in a mechanical linkage with one or more re- 
dundant freedoms is an ambitious undertaking. In force feedback mechanisms, the fidelity 
of the force feedback seizes the position of the predominant design objective, making all 
others pale by comparison. The fact that a subset of the overall linkage is free to move 
with all the concomitant inertial loadings poses a real threat to the force/torque feedback 
fidelity at the handgrip. Additionally, the motion of the redundant freedom by itself can 
be unstable, setting up small oscillations of the redundant freedom itself. 

One approach that appears worth investigating would provide damping in the null space. 
The previous section postulated a proportional plus derivative control action for each of the 
motors in the entire system. Damping in the null space would add an additional, separate 
damping term to each motor. 

Consider Equation 3.51 which defined the notion of the null space for the unaugmented 
jacobian: 

" 0 " 

"hg  ' 

Vhg 

0 
= 

aha 
*hg 

0 
+ 

0 
0 
0 
0 
0 
0 

'upper 

0   0   0       0       0   0   0 
9hg + 

"upper 

"lower 

0   0   0       0       0   0   0 
'nti/l 

(5.28) 

Also consider Equation 3.57 for the seventh row of the augmented jacobian: 

<i> = i>T[zb    zx    z2   0   0   0   0] (5.29) 
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The vector, if is the null vector of the unaugmented jacobian, as are all scalar multiples 
of if. Consider a scalar multiple, C, of if applied to the exoskeleton mechanism as a set of 

joint speeds. We have: 

0 

0 = [ Jaug ] C <j> (5.30) 

For an arbitrary vector of joint speeds, Ö, it is possible to resolve components parallel 
and orthogonal to the null vector, which are exclusively associated with motion of the elbow 
and handgrip respectively. We have: 

0eib = C<t> = H <i> (5.31) 

9hg — 9 — Qelb (5.32) 

One would therefore expect that if an additional set of feedback gains which weighted 

the joint speeds proportional to 0eib, and in a manner to oppose or damp their motion, then 
the motion of the redundant freedom would be suppressed while the motion of the handgrip 
would be left unhampered. Referring to Equation 5.15, to achieve damping of the elbow 
motion we could add a term to D of the form: 

Dnull — -KelbBebl (5.33) 

where: 

KM = a proportionality gain for the elbow damping feedback. 

The above assumes that each motor would be affected proportionately by the application 
of the elbow damping feedback. This assumption has very little basis because the dynamics 
of the individual motors are not proportional. Stated differently, one unit of feedback gain 
applied to two different motors could have significantly different results. However the above 
formulation is useful in establishing a design point which would yield a meaningful result if 
the individual motor dynamics were taken into account. It must also be pointed out that 
the application of the above requires sensing the joint speeds in real time and performing a 

significant amount of computation. 
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5.4    STATE VARIABLE FORMULATION AND LINEARIZA- 
TION 

The state variable formulation or modern control theory is well known and has immediate 
application to the exoskeleton system (Ref: [K2], [Cl], [Wl], and [Bl]). When a dynamic 
system can be described as a set of simultaneous linear first order differential equations of 
the form: 

x = [A]x + [B]u (5.34) 

y   =   [C]x + [D]u (5.35) 

where: 

x = the time derivative of the state vector, 

A =the system dynamic weighting matrix, 

u =the system inputs or stimulus, 

B =the command weighting matrix, 

y =the output vector, 

C =the output weighting matrix, 

D =the feedforward weighting matrix. 

then the state variable technique for dynamic system control can be applied. This tech- 
nique has especially powerful methods for pole placement and modifying system behavior. 
Furthermore it provides a measure for accounting for the nonlinear terms which have been 
completely disregarded in the classical formulation. A complete discussion of the state vari- 
able method is beyond the scope of this report, however its potential application will be 
briefly described. 

With respect to the above formulation and the equations of motion as given by Equation 

4.37, the^state vector can be taken as [9T 0T ^]; the inputs can be taken as the motor 
torque, Jmot, the applied load vector, Jhg, and the gravity load, JgTav\ while the output can 
be taken as the pose of the handgrip and redundant freedom. The various weighting matrices 
can be determined from the linearization of Equation 4.37, and the forward kinematics. 

76 



The dynamic model can be readily used to perform numerical differentiation for the 
linearization of the equations of motion. One could simply specify two slightly different 
kinematic states, perform the inverse dynamics, subtract the results and divide by the 
change in state to arrive at a linearization of the equations. While the linearization is 
laborious by hand, the computer model can be easily set up to perform the algebra such 
that the system can be described according to Equation 5.25 above. 

This method allows one to account for the complete system dynamics, and would be 
completely general for application to any serial robot or mechanism. With the continuing 
increase in computational ability, this approach could ultimately lay the groundwork for a 
new generation of robot controller. 
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Chapter 6 

RESULTS 

This chapter describes the quantitative results of the program research. Section 6.1 describes 
some of the run time results of the execution of the APL code for the dynamic model. Section 
6.2 presents results of the relative magnitude of the various terms of the dynamic model 
which provide insight into the type of controller which will ultimately be successful for 
the exoskeleton system. Section 6.3 demonstrates the application of the controller design 
techniques developed in Section 5.2. Finally Section 6.4 recounts some of the simulation 
results. 

6.1    DYNAMIC MODEL EXECUTION TIMING RESULTS 

The APL programming language presents a simple, effective medium in which to encode the 
very complicated dynamic model for the purpose of analysis and controller development. 
The emphasis in selecting APL as the programming language for the dynamic model lay 
in programming ease and not execution speed. The model displayed unexpectedly fast 
execution speed such that the model may be directly useful in on line control. 

Computer scientists began developing the APL language in the late 1950's and early 
1960's as a means to simulate computers and also as an object oriented language especially 
suited for mathematicians. International Business Machines performed much of the original 
development work. Scientific Time Sharing Corporation has pioneered the development of 
APL for personal computers and specifically for the 80386 microprocessor to take advan- 
tage of the full 32 bit word length. The software development in this research effort was 
performed upon a personal computer equipped with an 80386 processor and 80387 math 
coprocessor with a 20MHZ clock rate. 

APL includes a very convenient diagnostic feature to monitor execution times. Figure 
6.1 presents the APL formatted execution time results for the master batch file described in 
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All Here  Iter     v SYSTIME;I 
0.00 0.00 0 Cl] ATHIS FUNCTION IS A MASTER BATCH EXECUTION FILE 
0.00 0.00 0 C2] o**************************-***********************#. 
0.10 0.00 1 [3] ZROTMAKE A FORM NEW SET OF Z ROTATION MATRICES. 
0.06 0.00 1 [4] ROTATE R FORM THE SET OF COMBINED ROTATION M. 
0.06 0.00 1 C5] AXES A EXPRESS LINK X AND Z AXES IN GLOBAL. 
0.06 0.00 1 C6] POSITIONS A ORIGIN TO ORIGIN AND CENTER OF GRAV. 
0.04 0.00 1 [7] JACOBIAN A FORM JACOBIAN MATRIX. AND FIRST ORD. 
0.06 0.00 1 [8] LINKVELOCITY A CALCULATE THE LINK ANGULAR AND CG T. 
1.11 0.00 1 C9] ACLMATRIX A FORM THE LINK GEOMETRIC ACCELERATIO. 
0.15 0.00 1 CIO] ACCELERATION A FORM LINK TRANSLATIONAL AND ANGULAR. 
0.39 0.00 1 [11] LINKINERTIA A CALCULATE THE INERTIA TORQUE OF EAC. 
0.19 0.00 1 [12] JOINTINERTIA A CALCULATE THE JOINT TORQUE REQUIRED. 

7 
2.23 0.02 1 

Figure 6.1: Batch File Execution Time Results 

Section 4.3. Information is presented on a row by row basis with as much of the actual code 
which would fit on a computer screen displayed on the right hand side for convenience. The 
first column, "All," gives the execution time in seconds for each line. The second column 
"Here" describes the amount of time in seconds for execution in the parent program. Since 
each line is a call to a subroutine, all values are zero in the column. The last row displays 
the totals for each column. The program took a total of 2.23 seconds to execute with 0.02 
seconds of overhead associated with the management of the parent file. 

The comparatively low execution time is encouraging. The same test was run at the 
United States Air Force Armstrong Aerospace Research Laboratory on a personal computer 
equipped with an 80386 processor and 80387 math coprocessor but running at a clock rate 
of 33MHZ. In general the execution time was cut in half which is out of proportion to 
the clock speeds between the 20 MHZ and 33 MHZ machines. A total of 1.1 seconds was 
required for the entire program on the 33 MHZ machine. 

Absolutely no effort was spent in the programming to hold down the execution time. 
In fact the large, sparse matrices for the first order dynamic terms which included so many 
zero entries were executed as if they were full. Expressed differently, all multiplication by 
zeros were included even though it is known that certain terms are always zero. It was 
simply more convenient from a programming viewpoint to spend the extra execution time 
and include the multiplication by zero. 

Of special interest is the relative amount of execution time required by each line. Line 
[9] - ACLMATRIX consumes roughly half of the total time. This line forms the first order 
kinematic acceleration matrices. One way to reduce the overall execution time would be to 

79 



update these matrices on a periodic basis instead of every iteration. This must of course be 
justified by an examination of the change in magnitude of the matrix entries with system 
position. The same statement for reducing execution time can be extended for all lines. 
Time did not allow for the examination of the variation of the terms with position as 
originally planned. 

One other illuminating result is worth note. The individual APL code line within the 
function, JACOBIAN, which was responsible for executing Equation 4.15 which maps loads 
at the handgrip to torques at the joints was seen to execute at a 50HZ rate on the 33MHZ 
machine. This is surely a run time rate. This operation has exceptional significance because 
it represents possible the load command update rate from the slave manipulator, the factor 
of paramount importance. The update rate required for other processes in the control is 
not apparent without further research, but most likely, this rate will be significantly less. 

6.2    COMPARISON OF INERTIAL TERMS 

The dynamic model was exercised for several representative kinematic states of the ex- 
oskeleton to assess the relative magnitude of the various terms of Equation 4.37. The 
kinematic state was input in terms of the easily comprehended handgrip and elbow position 
and orientation, also referred to as the operator's coordinates. The inverse kinematics were 
performed to find the state in terms of the joint variables. Finally the inverse dynamics 
were performed to evaluate and compare the specific terms. 

Table 6.1 displays formatted kinematic and dynamic data. This format is preserved 
throughout the remainder of this section. The top half of the page presents the input data 
in terms of the operator's coordinates. The units are system international, implying that 
the unit of length is the meter, rotations are expressed in degrees, and time is expressed in 
seconds. The coordinate origin for the global system as depicted in Figure 3.3 is employed 
for these data. The three rows of the upper page refer in general to handgrip rotation, 
handgrip translation, and elbow rotation about the $ vector. The columns refer in general 
to the zeroth, first and second order time derivatives respectively of the kinematic state in 
operator's coordinates. The first two rows contain column vectors of ordered x, y, and z 
components. The third row is a scalar. 

The zeroth order handgrip angular entry is a three by three rotation matrix comprising 
the ordered x, y, and z unit vectors of the handgrip as expressed in the global coordinate 
frame. The second and third columns of the first row are the handgrip angular velocity and 
angular acceleration vectors, expressed in units of [%£] and [^] respectively, in the global 
coordinate frame. 

The second row of the upper portion of the page comprises the handgrip position, 
velocity, and acceleration vectors respectively. The units are [meters], [m^'r*], and [metJJ]. 
respectively. The coordinates are those of the global frame. 
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The final row is the angular position, speed and rate of change of speed of the redundant 
freedom scalar <f>, describing the rotation of the elbow plane about the i/> vector. The units 
are [deg], [^] and [j^], respectively across the columns. 

The bottom half of the page contains the program results. The page is broken into seven 
rows and seven columns. Each column represents one joint and is labeled accordingly. The 
first row represents the results of the zeroth order inverse kinematics, namely the angular 
displacement of the joints in [deg]. The second row represents the results of the first order 
inverse kinematics, namely the speed of each joint in [^]. The third row represents the 
results of the second order inverse kinematics, namely the rate of change of joint speeds 
given in [%£]. 

The fourth row represents the summation for each joint of all the resultant inertial 
torques at each joint arising from the first order inertia! loads on all links. The fifth row 
represents the same summation but applied to the second order terms. The sixth row 
represents the torque required at each joint to accelerate the inertia of the motor armature. 
The seventh and final row represent the summation at each joint of the previous three 
torque terms. Normally the torques are expressed in units of [N • cm]. Occasionally the 
units will be in [N • mm]. 

6.2.1    Pure Translational Velocity 

The kinematic state illustrated in Table 6.1 represents the handgrip at the operator's shoul- 
der level moving in pure translation at a speed of .15^ or roughly 6^, in the positive x 
direction with no elbow motion. Table 6.2 and Table 6.3 represent the same position but 
with the speed directed along the y and z axes respectively. Several significant results are 
apparent at this moderate speed. The first observation is that the nonlinear, first order 
terms have significant magnitude. This undermines the assumption that the motors can be 
treated as independent linear systems. The second observation is that the torque required 
to drive the motor armature inertia has significant magnitude. This is desirable from the 
viewpoint that the motor armature inertia is a linear term, and therefore the system will 
behave in a more linear fashion and be more easily controlled. It is clearly undesirable from 
the viewpoint of making a very large contribution to the overall system inertia load. 
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Kinematic State in Operator Coordinates 

Handgrip 
Angular 

Zeroth Order 

Handgrip 
Position 

Elbow 
Angular 

0.00 0.00 -1.00 
0.00 1.00 0.00 
1.00    0.00    0.00 

First Order 

0.00 
0.00 
0.38 

0.00 

0.00 
0.00 
0.00 

Second Order 

0.15 
0.00 
0.00 

0.00 

0.00 
0.00 
0.00 

0.00 
0.00 
0.00 

0.00 

Kinematic and Dynamic State at Joints 

Joint 1 Joint 2 Joint 3 Joint 4 Joint 5 Joint 6 Joint 7 

A (deg) 180.0 318.6 0.0 318.6 0.0 367.2 0 

* (S) 0.0 -28.2 0.0 0.0 0.0 -28.2 0.0 

*  (&) 0.0 -1.7 0.0 -14.0 0.0 -15.7 0.0 

Ji'ink (N-cm) -3.0 -0.9 -0.6 10.7 0.0 0.9 0.0 

J/U(N-cm) 0.4 -1.3 1.0 -9.4 0.0 -0.9 0.0 

Jmotor   (N • Cm) 0.0 -4.0 0.0 -6.8 0.0 0.0 0.0 

Jtotal (N -cm) -2.6 -6.2 0.4 -5.6 0.0 0.0 0.0 

Table 6.1: Inertia for Pure Translational Velocity in x + 
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Kinematic State in Operator Coordinates 

Zeroth Order First Order Second Order 

Handgrip 
Angular 

0.00    0.00    -1.00 
0.00    1.00    0.00 
1.00    0.00    0.00 

0.00 
0.00 
0.00 

0.00 
0.00 
0.00 

Handgrip 
Position 

0.00 
0.00 
0.38 

0.00 
0.15 
0.00 

0.00 
0.00 
0.00 

Elbow 
Angular 

0.00 0.00 0.00 

Kinematic and Dynamic State at Joints 

Joint 1 Joint 2 Joint 3 Joint 4 Joint 5 Joint 6 Joint 7 

9i (deg) 180.0 318.6 0.0 318.6 0.0 367.2 0 

* (S) 32.0 0.0 -42.6 0.0 0.0 0.0 -28.2 

ft (T5) 0.0 -17.5 0.0 -14.0 0.0 -15.7 0.0 

JU (N-cm) 0.5 27.4 -1.4 7.7 0.0 0.1 0.0 

J!U (N ■ cm) 2.9 -42.3 4.1 -6.7 0.0 0.0 0.0 

Jmotor (N ■ cm) 0.0 -39.6 0.0 -6.8 0.0 0.0 0.0 

Jtotal (N-cm) 3.4 -54.5 2.8 -5.9 0.0 0.1 0.0 

Table 6.2: Inertia for Pure Translational Velocity in y ,7 + 
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Kinematic State in Operator Coordinates 

Zeroth Order First Order Second Order 

Handgrip 
Angular 

0.00    0.00    -1.00 
0.00    1.00    0.00 
1.00    0.00    0.00 

0.00 
0.00 
0.00 

0.00 
0.00 
0.00 

Handgrip 
Position 

0.00 
0.00 
0.38 

0.00 
0.00 
0.15 

0.00 
0.00 
0.00 

Elbow 
Angular 

0.00 0.00 0.00 

Kinematic and Dynamic State at Joints 

Joint 1 Joint 2 Joint 3 Joint 4 Joint 5 Joint 6 Joint 7 

0i (deg) 180.0 318.6 0.0 318.6 0.0 367.2 0 

*  (S) 0.0 -3.6 0.0 -28.4 0.0 -32.0 0.0 

*  (Ä) 0.0 17.7 0.0 2.0 0.0 19.7 0.0 

JLk (N-cm) -1.2 -15.1 -0.8 -0.2 0.0 0.4 0.0 

JIU (N ■ cm) -2.9 44.8 -3.6 -0.9 0.0 -0.4 0.0 

Jmotor (N ■ cm) 0.0 40.2 0.0 1.0 0.0 0.0 0.0 

Jtotal (N-cm) -4.1 69.9 -4.4 -0.1 0.0 0.0 0.0 

Table 6.3: Inertia for Pure Translational Velocity in z 7 + 
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Kinematic State in Operator Coordinates 

Zeroth Order First Order Second Order 

Handgrip 
Angular 

0.00    0.00    -1.00 
0.00    1.00    0.00 
1.00    0.00    0.00 

0.00 
0.00 
0.00 

0.00 
0.00 
0.00 

Handgrip 
Position 

0.00 
0.00 
0.38 

-0.15 
0.00 
0.00 

0.00 
0.00 
0.00 

Elbow 
Angular 

0.00 0.00 0.00 

Kinematic and Dynamic State at Joints 

Joint 1 Joint 2 Joint 3 Joint 4 Joint 5 Joint 6 Joint 7 

0i (deg) 180.0 318.6 0.0 318.6 0.0 367.2 0 

ft  (S) 0.0 28.2 0.0 0.0 0.0 28.2 0.0 

ft iä) 0.0 -1.7 0.0 -14.0 0.0 -15.7 0.0 

JLk (N-em) -3.0 -0.9 -0.6 10.7 0.0 0.9 0.0 

JIU (N-cm) 0.4 -1.3 1.0 -9.4 0.0 -0.9 0.0 

Jmotor   (N-Cm) 0.0 -4.0 0.0 -6.8 0.0 0.0 0.0 

Jtotal (N-cm) -2.6 -6.2 0.4 -5.6 0.0 0.0 0.0 

Table 6.4: Inertia for Pure Translational Velocity in x 
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6.2.2    Pure Translational Velocity - Opposite Sign 

Table 6.4 represents the same state as Table 6.1, with the exception that the handgrip 
velocity is reversed in direction. It is noteworthy that in comparison with Table 6.1, all 
the joint kinematic parameters have changed sign, but the all of the dynamic parameters 
have not changed sign. This unexpected result is explained by considering Equation 3.47. 
The matrix in the first order term is symmetric, and when coupled with the square of 
the first order state, the sign change in the state is nullified. This represents yet another 
manifestation of the nonlinearity and the potential difficulty in control. 

6.2.3    Pure Elbow Rotation about 0 

Table 6.5 presents data for the case of a fixed handgrip position and orientation with pure 
rotational motion of the elbow about V> at a rate of 35^, a fairly natural speed for a human 
to rotate this joint. The inertial torques associated with this motion are large by comparison 
with the pure translational motions. This provides an indication of the potential difficulty 
in achieving high forcefeedback fidelity at the handgrip in the presence of elbow motion. 

6.2.4    Pure Handgrip Angular Velocity 

Table 6.6, 6.7, and 6.8 demonstrate inertial effects for pure rotation of the handgrip at a rate 
of 15-^ about each of the three axes. The rate is based upon a supposed natural twisting 
or pouring operation. While direct comparison with the translational motions cannot be 
made because the magnitudes of the input speeds are arbitrary, the overall magnitude of 
the terms are smaller for the rotations. This is explained by the fact that in general the 
links associated with the handgrip have less mass content. This observation is potentially 
useful for the controller design of the more proximal joints, allowing one to possibly ignore 
these terms with impunity when developing a controller for the proximal joints. The same 
observations regarding the magnitude of the first order terms and the motor inertia hold 
for these cases to the same extent that they hold for the translational cases. 

6.2.5    Pure Translational Acceleration 

Tables 6.9, 6.10, and 6.11 demonstrate inertial effects for pure translational acceleration at 
one quarter the acceleration of gravity along each of the coordinate axes. This acceleration 
rate was chosen to be arbitrarily representative of handgrip accelerations during a teleopera- 
tion process. While making a direct comparison with the pure translational velocity studies 
is not entirely appropriate, a trend of the magnitude of the largest terms for the handgrip 
acceleration being much greater than the magnitude of the largest terms for the handgrip 
translation is apparent. It is also noteworthy that the motor inertia plays a significant role 
in the total inertia. 
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Kinematic State in Operator Coordinates 

Zeroth Order First Order Second Order 

Handgrip 
Angular 

0.00    0.00    -1.00 
0.00    1.00    0.00 
1.00    0.00    0.00 

0.00 
0.00 
0.00 

0.00 
0.00 
0.00 

Handgrip 
Position 

0.00 
0.00 
0.38 

0.00 
0.00 
0.00 

0.00 
0.00 
0.00 

Elbow 
Angular 

0.00 35.00 0.00 

Kinematic and Dynamic State at Joints 

Joint 1 Joint 2 Joint 3 Joint 4 Joint 5 Joint 6 Joint 7 

0i (deg) 180.0 318.6 0.0 318.6 0.0 367.2 0 

°i  (S) 35.0 0.0 0.0 0.0 280.0 0.0 -277.8 

*  (&) 0.0 0.0 0.0 0.0 0.0 169.7 0.0 

JU (N ■ cm) 1.1 18.4 -2.1 10.8 -0.1 4.8 0.0 

JIU (N ■ cm) 0.1 -9.9 0.1 7.0 -0.1 5.1 0.0 

Jmotor (N ■ cm) 0.0 0.0 0.0 0.0 0.0 0.4 0.0 

Jtotal (N ■ cm) 1.1 8.4 -1.9 17.8 -0.2 10.3 0.0 

Table 6.5: Inertia for Pure Elbow Ratation about i/> + 
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Kinematic State in Operator Coordinates 

Zeroth Order First Order Second Order 

Handgrip 
Angular 

0.00    0.00    -1.00 
0.00    1.00    0.00 
1.00    0.00    0.00 

15.00 
0.00 
0.00 

0.00 
0.00 
0.00 

Handgrip 
Position 

0.00 
0.00 
0.38 

0.00 
0.00 
0.00 

0.00 
0.00 
0.00 

Elbow 
Angular 

0.00 0.00 0.00 

Kinematic and Dynamic State at Joints 

Joint 1 Joint 2 Joint 3 Joint 4 Joint 5 Joint 6 Joint 7 

0i (deg) 180.0 318.6 0.0 318.6 0.0 367.2 0 

ft (S) 4.3 0.0 -5.7 0.0 0.0 0.0 -18.8 

*   (Ä) 0.0 -0.4 0.0 -1.2 0.0 -1.4 0.0 

JLk (N-cm) 0.0 0.5 0.0 0.2 0.0 0.0 0.0 

J/U (N ■ cm) 0.1 -0.8 0.1 -0.8 0.0 -0.1 0.0 

Jmotor   (N • Cm) 0.0 -1.0 0.0 -0.6 0.0 0.0 0.0 

Jtotai (N-cm) 0.1 -1.3 0.1 -1.2 0.0 -0.1 0.0 

Table 6.6: Inertia for Pure Handgrip Angular Velocity about x + 
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Kinematic State in Operator Coordinates 

Zeroth Order First Order Second Order 

Handgrip 
Angular 

0.00    0.00    -1.00 
0.00    1.00    0.00 
1.00    0.00    0.00 

0.00 
15.00 
0.00 

0.00 
0.00 
0.00 

Handgrip 
Position 

0.00 
0.00 
0.38 

0.00 
0.00 
0.00 

0.00 
0.00 
0.00 

Elbow 
Angular 

0.00 0.00 0.00 

Kinematic and Dynamic State at Joints 

Joint 1 Joint 2 Joint 3 Joint 4 Joint 5 Joint 6 Joint 7 

Qi (deg) 180.0 318.6 0.0 318.6 0.0 367.2 0 

ft (S) 0.0 3.8 0.0 0.0 0.0 18.8 0.0 

*  (ft) 0.0 -0.2 0.0 -1.2 0.0 -1.4 0.0 

JU (N • cm) -0.1 0.3 0.0 0.3 0.0 0.0 0.0 

J!U (N ■ cm) 0.0 -0.1 0.1 -0.8 0.0 -0.1 0.0 

Jmotor (N ■ cm) 0.0 -0.4 0.0 -0.6 0.0 0.0 0.0 

Jtotal (N-cm) 0.0 -0.2 0.1 -1.2 0.0 -0.1 0.0 

Table 6.7: Inertia for Pure Handgrip Angular Velocity about y + 
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Kinematic State in Operator Coordinates 

Zeroth Order First Order Second Order 

Handgrip 
Angular 

0.00    0.00    -1.00 
0.00    1.00    0.00 
1.00    0.00    0.00 

0.00 
0.00 
15.00 

0.00 
0.00 
0.00 

Handgrip 
Position 

0.00 
0.00 
0.38 

0.00 
0.00 
0.00 

0.00 
0.00 
0.00 

Elbow 
Angular 

0.00 0.00 0.00 

Kinematic and Dynamic State at Joints 

Joint 1 Joint 2 Joint 3 Joint 4 Joint 5 Joint 6 Joint 7 

0i (deg) 180.0 318.6 0.0 318.6 0.0 367.2 0 

* (S) 0.0 0.0 0.0 0.0 -120.0 0.0 119.1 

* (ä) 0.0 0.0 0.0 0.0 0.0 31.2 0.0 

JLk (N-cm) 0.2 -0.9 -0.1 2.3 0.0 1.0 0.0 

JIUiN-cm) 0.0 -1.8 0.0 1.3 0.0 0.9 0.0 

Jmotor (N •cm) 0.0 0.0 0.0 0.0 0.0 0.1 0.0 

Jtotal (N-cm) 0.2 -2.7 0.0 3.6 0.0 2.0 0.0 

Table 6.8: Inertia for Pure Handgrip Angular Velocity about z + 
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Kinematic State in Operator Coordinates 

Zeroth Order First Order Second Order 

Handgrip 
Angular 

0.00    0.00    -1.00 
0.00    1.00    0.00 
1.00    0.00    0.00 

0.00 
0.00 
0.00 

0.00 
0.00 
0.00 

Handgrip 
Position 

0.00 
0.00 
0.38 

0.00 
0.00 
0.00 

2.45 
0.00 
0.00 

Elbow 
Angular 

0.00 0.00 0.00 

Kinematic and Dynamic State at Joints 

Joint 1 Joint 2 Joint 3 Joint 4 Joint 5 Joint 6 Joint 7 

9i (deg) 180.0 318.6 0.0 318.6 0.0 367.2 0 

°i  (S) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

*  (&) 0.0 -460.5 0.0 0.0 0.0 -460.5 0.0 

JU (N-cm) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

J!U (N-cm) 74 -1175 90 60 0.0 13 0.0 

JmotoT {N-cm) 0.0 -1044.0 0.0 0.0 0.0 -1.0 0.0 

Jtotal (N-cm) -74.0 -2219.0 90 60 0.0 12.0 0.0 

Table 6.9: Inertia for Pure Translational Acceleration in x — + 
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Kinematic State in Operator Coordinates 

Zeroth Order First Order Second Order 

Handgrip 
Angular 

0.00    0.00    -1.00 
0.00    1.00    0.00 
1.00    0.00    0.00 

0.00 
0.00 
0.00 

0.00 
0.00 
0.00 

Handgrip 
Position 

0.00 
0.00 
0.38 

0.00 
0.00 
0.00 

0.00 
2.45 
0.00 

Elbow 
Angular 

0.00 0.00 0.00 

Kinematic and Dynamic State at Joints 

Joint 1 Joint 2 Joint 3 Joint 4 Joint 5 Joint 6 Joint 7 

9i (deg) 180.0 318.6 0.0 318.6 0.0 367.2 0 

*  (S) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

*  (Ä) 522.2 0.0 -696.3 0.0 0.0 0.0 -460.5 

JU (N ■ cm) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

JIUiN.cm) 578.0 53.0 -296.0 31.0 15.0 0.0 5.0 

JmotoT (N • cm) 1184.0 0.0 -532.0 0.0 0.0 0.0 -1.0 

Jtotal (N ■ cm) 1762.0 53.0 -828.0 31.0 15.0 0.0 4.0 

Table 6.10: Inertia for Pure Translational Acceleration in y + 
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Kinematic State in Operator Coordinates 

Zeroth Order First Order Second Order 

Handgrip 
Angular 

0.00    0.00    -1.00 
0.00    1.00    0.00 
1.00    0.00    0.00 

0.00 
0.00 
0.00 

0.00 
0.00 
0.00 

Handgrip 
Position 

0.00 
0.00 
0.38 

0.00 
0.00 
0.00 

0.00 
0.00 
2.45 

Elbow 
Angular 

0.00 0.00 0.00 

Kinematic and Dynamic State at Joints 

Joint 1 Joint 2 Joint 3 Joint 4 Joint 5 Joint 6 Joint 7 

9i (deg) 180.0 318.6 0.0 318.6 0.0 367.2 0 

*  (S) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

*• (ä) 0.0 -58.0 0.0 -464.2 0.0 -522.2 0.0 

JU (N • cm) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

JIU (N-cm) 12.0 -42.0 34.0 -313.0 1.0 -31.0 0.0 

Jmotor   (N -Cm) 0.0 -132.0 0.0 -227.0 0.0 -1.0 0.0 

Jtotai (N-cm) 12.0 -173.0 34.0 -540.0 1.0 -33.0 0.0 

Table 6.11: Inertia for Pure Translational Acceleration in z ? + 
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6.2.6    Slow Speed Motions 

Tables 6.12, 6.13, and 6.14 show data pertaining to attempts to discover at what speeds the 
first order terms become insignificant. Only translation^ motions were considered. The 
speed was taken at 1^, a very slow motion for a human to execute. The inertia] torques 
are given in units of N- mm. Even at these low speeds, the first order terms are seen to have 
very significant magnitudes. This further reduces the viability of neglecting these terms in 
controller synthesis. 

6.2.7    Inertia Variation with Position 

Tables 6.15, 6.16, and 6.17 have the same motion profile as Tables 6.1, 6.2, and 6.3 re- 
spectively, but at a different handgrip position. This is done to investigate the variation 
of the inertia content with position. Direct comparison shows very large variations in the 
magnitude of the terms. This undermines the notion that the system can be legitimately 
treated as time invariant or having constant parameters. 

6.2.8    Comparison with Static Loads 

For the purposes of comparison of inertial loads and static loads, a study was made of the 
magnitude of the static torque at the joint for the handgrip position in the case of Table 
6.1. A pure force of 44.48 [N] (10/6/.) was applied along each of the coordinate axes. In no 
case was a joint torque observed to exceed 1700[iV • cm]. A general comparison is difficult. 
For the pure accelerations, the static torques rival the inertial torques in magnitude. For 
this large applied load, the static torque generally exceeds the inertial torque by an order of 
magnitude. This observation lends credibility to the treatment of the system as independent, 
linear subsystems. 
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Kinematic State in Operator Coordinates 

Zeroth Order First Order Second Order 

Handgrip 
Angular 

0.00    0.00    -1.00 
0.00    1.00    0.00 
1.00    0.00    0.00 

0.00 
0.00 
0.00 

0.00 
0.00 
0.00 

Handgrip 
Position 

0.00 
0.00 
0.38 

0.01 
0.00 
0.00 

0.00 
0.00 
0.00 

Elbow 
Angular 

0.00 0.00 0.00 

Kinematic and Dynamic State at Joints 

Joint 1 Joint 2 Joint 3 Joint 4 Joint 5 Joint 6 Joint 7 

0i {deg) 180.0 318.6 0.0 318.6 0.0 367.2 0 

* (S) 0.0 -1.9 0.0 0.0 0.0 -1.9 0.0 

*  (&) 0.0 0.0 0.0 -0.1 0.0 -0.1 0.0 

JU (N • cm) -0.1 0.0 0.0 0.5 0.0 0.0 0.0 

JIU (N ■ cm) 0.0 -0.1 0.0 -0.4 0.0 0.0 0.0 

Jmotor   (N • Cm) 0.0 -0.2 0.0 -0.3 0.0 0.0 0.0 

Jtotal {N-cm) -0.1 -0.3 0.0 -0.2 0.0 0.0 0.0 

Table 6.12: Inertia for Slow Translational Velocity in x 7 + 
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Kinematic State in Operator Coordinates 

Zeroth Order First Order Second Order 

Handgrip 
Angular 

0.00    0.00    -1.00 
0.00    1.00    0.00 
1.00    0.00    0.00 

0.00 
0.00 
0.00 

0.00 
0.00 
0.00 

Handgrip 
Position 

0.00 
0.00 
0.38 

0.00 
0.01 
0.00 

0.00 
0.00 
0.00 

Elbow 
Angular 0.00 0.00 0.00 

Kinematic and Dynamic State at Joints 

Joint 1 Joint 2 Joint 3 Joint 4 Joint 5 Joint 6 Joint 7 

0i (deg) 180.0 318.6 0.0 318.6 0.0 367.2 0 

* (S) 2.1 0.0 -2.8 0.0 0.0 0.0 -1.9 

*  (S) 0.0 -0.1 0.0 -0.1 0.0 -0.1 0.0 

JU (N-cm) 0.0 1.2 -0.1 0.3 0.0 0.0 0.0 

J!U(N-cm) 0.1 -1.9 0.2 -0.3 0.0 -0.0 0.0 

Jmotor   {N • Cm) 0.0 -1.8 0.0 -0.3 0.0 0.0 0.0 

Jtotal (N -cm) 0.2 -2.4 0.1 -0.3 0.0 0.0 0.0 

Table 6.13: Inertia for Slow Translational Velocity in y + 
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Kinematic State in Operator Coordinates 

Zeroth Order First Order Second Order 

Handgrip 
Angular 

0.00    0.00    -1.00 
0.00    1.00    0.00 
1.00    0.00    0.00 

0.00 
0.00 
0.00 

0.00 
0.00 
0.00 

Handgrip 
Position 

0.00 
0.00 
0.38 

0.00 
0.00 
0.01 

0.00 
0.00 
0.00 

Elbow 
Angular 

0.00 0.00 0.00 

Kinematic and Dynamic State at Joints 

Joint 1 Joint 2 Joint 3 Joint 4 Joint 5 Joint 6 Joint 7 

0i (deg) 180.0 318.6 0.0 318.6 0.0 367.2 0 

* (S) 0.0 -0.2 0.0 -1.9 0.0 -2.1 0.0 

* (i&) 0.0 0.1 0.0 0.0 0.0 0.1 0.0 

JU (N ■ cm) -0.1 -0.7 0.0 0.0 0.0 0.0 0.0 

J/U (N • cm) -0.1 2.0 -0.2 0.0 0.0 0.0 0.0 

Jmotor   {N ■ Cm) 0.0 1.8 0.0 0.0 0.0 0.0 0.0 

Jtotal (N ■ cm) -0.2 3.1 -0.2 0.0 0.0 0.0 0.0 

Table 6.14: Inertia for Slow Translational Velocity in z ? + 
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Kinematic State in Operator Coordinates 

Handgrip 
Angular 

Handgrip 
Position 

Elbow 
Angular 

Zeroth Order 

0.00 0.00 -1.00 
0.00 1.00 0.00 
1.00    0.00    0.00 

0.46 
0.00 
0.38 

0.00 

First Order 

0.00 
0.00 
0.00 

0.15 
0.00 
0.00 

0.00 

Second Order 

0.00 
0.00 
0.00 

0.00 
0.00 
0.00 

0.00 

Kinematic and Dynamic State at Joints 

Joint 1 Joint 2 Joint 3 Joint 4 Joint 5 Joint 6 Joint 7 

0i (deg) 180.0 270.0 0.0 270.0 0.0 270.0 0 

*  (£) 0.0 0.0 0.0 -28.2 0.0 -28.2 0.0 

* (SO 0.0 9.3 0.0 -9.3 0.0 0.0 0.0 

JU (N ■ cm) 0.0 -18.2 -1.0 -0.9 0.0 0.9 0.0 

JLk (N • cm) 0.1 34.5 -1.3 1.1 0.0 -0.9 0.0 

Jmotor   (N • Cm) 0.0 21.0 0.0 -4.5 0.0 0.0 0.0 

Jtotai (N • cm) 0.1 37.2 -2.3 -4.3 0.0 0.0 0.0 

Table 6.15: Inertia for Pure Translational Velocity in x + 
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Kinematic State in Operator Coordinates 

Zeroth Order First Order Second Order 

Handgrip 
Angular 

0.00    0.00    -1.00 
0.00    1.00    0.00 
1.00    0.00    0.00 

0.00 
0.00 
0.00 

0.00 
0.00 
0.00 

Handgrip 
Position 

0.46 
0.00 
0.38 

0.00 
0.15 
0.00 

0.00 
0.00 
0.00 

Elbow 
Angular 

0.00 0.00 0.00 

Kinematic and Dynamic State at Joints 

Joint 1 Joint 2 Joint 3 Joint 4 Joint 5 Joint 6 Joint 7 

0i (deg) 180.0 270.0 0.0 270.0 0.0 270.0 0 

*  (S) 13.0 0.0 -8.7 0.0 -13.0 0.0 -8.7 

*  (&) 0.0 0.9 0.0 -9.3 0.0 -4.4 0.0 

JU (N-cm) 0.5 5.6 0.2 6.9 0.0 -0.3 0.0 

JIU (N-cm) -0.6 -4.2 -0.1 -6.7 0.0 0.3 0.0 

Jmotor   (N-Cm) 0.0 2.0 0.0 -4.5 0.0 0.0 0.0 

Jtotal (N-cm) -0.1 3.4 0.1 -4.3 0.0 0.0 0.0 

Table 6.16: Inertia for Pure Translational Velocity in y .7 + 
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Kinematic State in Operator Coordinates 

Zeroth Order First Order Second Order 

Handgrip 
Angular 

0.00    0.00    -1.0 
0.00    1.00    0.00 
1.00    0.00    0.00 

0.00 
0.00 
0.00 

0.00 
0.00 
0.00 

Handgrip 
Position 

0.46 
0.00 
0.38 

0.00 
0.00 
0.15 

0.00 
0.00 
0.00 

Elbow 
Angular 0.00 0.00 0.00 

Kinematic and Dynamic State at Joints 

Joint 1 Joint 2 Joint 3 Joint 4 Joint 5 Joint 6 Joint 7 

9i (deg) 180.0 270.0 0.0 270.0 0.0 270.0 0 

* (S) 0.0 18.8 0.0 -18.8 0.0 0.0 0.0 

*■ (ä) 0.0 0.0 0.0 -9.3 0.0 -9.3 0.0 

JU (N • cm) -1.3 7.9 0.0 7.9 0.0 -0.3 0.0 

J/LiN-cm) -0.7 -7.5 0.0 -7.3 0.0 0.3 0.0 

Jmotor   (N -Cm) 0.0 0.0 0.0 -4.5 0.0 0.0 0.0 

Jtotai (N • cm) -2.0 0.4 0.0 -3.9 0.0 0.0 0.0 

Table 6.17: Inertia for Pure Translational Velocity in z ' 
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6.3    CONTROLLER RESULTS 

The controller formulation and algorithms of Section 5.2 were implemented in APL for 
examination in parallel with the dynamic model. The controller parameters as described 
by Equation 5.10, Equation 5.13, and Equation 5.15 were calculated for the design values 
of natural frequency, un — 40 —, and damping ratio, £ = 1, for eight different exoskeleton 
positions corresponding to the corners of a cube in the exoskeleton workspace as depicted in 
Figure 6.2. The second order rotary inertia, Irot, was found according to Equation 5.24 by 
setting one joint acceleration equal to 0, = 1 j^ and calculating the resultant torque at the 
ith joint required to sustain that acceleration, while all other joints were held motionless. 
The parameter Irot was then found by dividing the torque by the acceleration. Actual motor 
parameters were used in the calculations of A, Kpro, and D. The motor data are presented 
in Table 6.18. 

The results of the controller study are depicted in tabular form in Tables 6.19 through 
6.26. The upper portion of the table is identical to that of that the inertial study results, 
describing the kinematic state at the handgrip. There is a minor difference in that the 
acceleration is shown as zero and the values of 9 are not reported. This is because seven 
different joint inertias were examined at each position of the mechanism. 

The bottom portion of the table presents the controller results. The first row provides 
the joint displacements corresponding to the handgrip pose as given by the inverse kine- 
matics. The second row describes the joint speeds for confirmation purposes only, which 
are universally zero. The third row gives the total rotary inertia at each joint according 
to its respective column number, in units of kg ■ m2. The fourth row gives the value of 
the equivalent spring at each joint as given by the diagonal elements of the resultant of 
Equation 5.23 in units of ^jj-. The fifth row provides the overall controller gain, Kgain,- 
in units of ^p The sixth row provides the overall damping, Fdamp, in units of N'™jec■ 
Row seven presents the dimensionless scaling factor, A. Row eight describes the designer 
adjustable voltage gain, Kpro, in units of '!^f. The ninth and final row presents the values 
of the designer adjustable damping voltage gain, D, in units of "°^ec • 

6.3.1    Reasonableness of Terms 

Study of all gains shows very large gains for the proximal links. This is expected when con- 
sidering the comparatively large rotational inertia. Additionally, the value of the equivalent 
spring is much larger for the proximal joints which experience a handgrip spring magnified 
by the large distance over which it acts. The negative value for Kpro in the most distal 
three joints arises from the large ratio of effective spring to joint inertia as seen by consid- 
ering Equation 5.13. This negative sign is of no consequence since it is cancelled by the 
corresponding value of A. 
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(0, 0.15. Ü.46) 

(0.3, 0.15,0.46) 

Figure 6.2: Controller Evaluation Points 

Joint Motor kfric 

[rpm J 

*mot 

[amp 

**bemf 

f   V 
[krpm 

R 

[ ohms ] 

1 Inland 2105 7.3 x 10"5 1.518 158.92 7.7 
2 Inland 2105 7.3 x 10"5 1.518 158.92 7.7 
3 Inland 1503 1.5 x 10"5 0.190 19.96 1.3 
4 Inland 1503 1.5 x lO"5 0.190 19.96 1.3 
5 Inland 502 5.9 x 10"7 0.044 4.68 5.7 
6 Inland 502 5.9 x 10"7 0.044 4.68 5.7 
7 Inland 502 5.9 x 10"7 0.044 4.68 5.7 

Table 6.18: Motor Parameters 
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Kinematic State in Operator Coordinates 

Zeroth Order First Order Second Order 

Handgrip 
Angular 

0.00    0.00    -1.00 
0.00    1.00     0.00 
1.00    0.00     0.00 

0.00 
0.00 
0.00 

0.00 
0.00 
0.00 

Handgrip 
Position 

0.00 
0.15 
0.25 

0.00 
0.00 
0.00 

0.00 
0.00 
0.00 

Elbow 
Angular 

0.00 0.00 0.00 

Controller Parameters 

Joint 1 Joint 2 Joint 3 Joint 4 Joint 5 Joint 6 Joint 7 

0i (deg) 220.8 307.3 -54.9 332.4 0.0 385.4 -40.6 

°i  (Ä) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Irot (kg ■ m2) 2.172 2.530 0.608 0.649 0.010 0.018 0.002 

Kequ   (N • m) 753 816 829 725 383 375 386 

Kgain  (N-m) 3475 4048 973 1038 15 28 4 

Fdamp (N-m-sec) 173.7 202.4 48.7 51.9 0.8 1.4 0.2 

A 0.8 0.8 0.1 0.3 -23.8 -12.3 -102.4 

Kpro   (volt) 230 273 14 39 -786 -741 -817 

D (volt • sec) 13.2 15.6 4.7 6.3 1.6 3.0 0.4 

Table 6.19: Controller Parameters for a Fixed Point 
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Kinematic State in Operator Coordinates 

Zeroth Order First Order Second Order 

Handgrip 
Angular 

0.00    0.00    -1.00 
0.00    1.00    0.00 
1.00    0.00    0.00 

0.00 
0.00 
0.00 

0.00 
0.00 
0.00 

Handgrip 
Position 

0.00 
0.15 
0.46 

0.00 
0.00 
0.00 

0.00 
0.00 
0.00 

Elbow 
Angular      | 0.00 0.00 0.00 

 ■ _l 

Controller Parameters 

Joint 1 Joint 2 Joint 3 Joint 4 Joint 5 Joint 6 Joint 7 

Oi (deg) 203.4 314.8 -31.5 298.6 0.0 347.9 -21.8 

*  (£) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Irot (kg ■ m2) 2.097 3.092 0.818 0.663 0.011 0.018 0.002 

Kequ   {N • m) 896 1375 1094 841 385 383 386 

Kgain  (N-m) 3356 4947 1309 1061 18 29 4 

Fdamp (N-m- sec) 167.8 247.3 65.5 53.0 0.9 1.4 0.2 

A 0.7 0.7 0.2 0.2 -20.3 -12.2 -102.4 

Kpro   (volt) 208 302 21 27 -784 -755 -817 

D(x )olt • sec) 12.7 19.4 6.3 6.4 1.9 3.0 0.4 

Table 6.20: Controller Parameters for a Fixed Point 
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Kinematic State in Operator Coordinates 

Zeroth Order First Order Second Order 

Handgrip 
Angular 

0.00    0.00    -1.00 
0.00    1.00    0.00 
1.00    0.00    0.00 

0.00 
0.00 
0.00 

0.00 
0.00 
0.00 

Handgrip 
Position 

0.00 
-0.15 
0.46 

0.00 
0.00 
0.00 

0.00 
0.00 
0.00 

Elbow 
Angular 

0.00 0.00 0.00 

Controller Parameters 

Joint 1 Joint 2 Joint 3 Joint 4 Joint 5 Joint 6 Joint 7 

9i (deg) 156.6 314.8 31.5 298.6 0.0 347.5 21.8 

*  (&) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Irot (kg-m2) 2.170 3.152 0.814 0.661 0.012 0.018 0.002 

Kequ (N-m) 896 1375 1094 841 385 383 386 

Kgain (N-m) 3473 5043 1302 1058 19 30 4 

Fdamp (N-m-sec) 173.6 252.1 65.1 52.9 1.0 1.5 0.2 

A 0.7 0.7 0.2 0.2 -18.8 -11.9 -102.4 

Kpro   (volt) 218 310 21 27 -781 -754 -817 

D (volt • sec) 13.2 19.8. 6.3 6.4 2.0 3.1 0.4 

Table 6.21: Controller Parameters for a Fixed Point 
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Kinematic State in Operator Coordinates 

Handgrip 
Angular 

Handgrip 
Position 

Elbow 
Angular 

Zeroth Order 

0.00 0.00 -1.00 
0.00 1.00 0.00 
1.00    0.00    0.00 

0.00 
-0.15 
0.25 

0.00 

First Order 

0.00 
0.00 
0.00 

0.00 
0.00 
0.00 

0.00 

Second Order 

0.00 
0.00 
0.00 

0.00 
0.00 
0.00 

0.00 

Controller Parameters 

Joint 1 Joint 2 Joint 3 Joint 4 Joint 5 Joint 6 Joint 7 

0i (deg) 139.2 307.3 54.9 332.4 0.0 385.4 40.6 

* (Ä) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

hot (kg • m2) 2.333 2.570 0.599 0.648 0.006 0.018 0.002 

Kequ   (N • m) 753 816 829 725 383 375 386 

Kgain (N-m) 3733 4112 958 1036 10 29 4 

Fdamp (N-m- sec) 186.6 205.6 47.9 51.8 0.5 1.4 0.2 

A 0.8 0.8 0.1 0.3 -36.1 -12.0 -102.4 

Kpro   (volt) 252 279 13 39 -797 -739 -817 

D (volt • sec) 14.3 15.9 4.6 6.3 1.1 3.0 0.4 

Table 6.22: Controller Parameters for a Fixed Point 
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Kinematic State in Operator Coordinates 

Zeroth Order First Order Second Order 

Handgrip 
Angular 

0.00    0.00    -1.00 
0.00    1.00    0.00 
1.00    0.00    0.00 

0.00 
0.00 
0.00 

0.00 
0.00 
0.00 

Handgrip 
Position 

0.30 
0.15 
0.25 

0.00 
0.00 
0.00 

0.00 
0.00 
0.00 

Elbow 
Angular 

0.00 0.00 0.00 

Controller Parameters 

Joint 1 Joint 2 Joint 3 Joint 4 Joint 5 Joint 6 Joint 7 

0i {deg) 177.5 267.1 -40.7 303.6 0.0 299.8 -40.6 

°i  (ft) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Irot {kg-m2) 3.203 3.002 0.847 0.713 0.022 0.018 0.002 

Kequ (N-m) 990 1142 1090 931 375 375 386 

Kgain {N-m) 5125 4803 1354 1141 35 28 4 

Fdamv (N-m-sec) 256.2 240.2 67.7 57.1 1.8 1.4 0.2 

A 0.8 0.8 0.2 0.2 -9.7 -12.3 -102.4 

Kpro   [volt) 350 309 26 26 -725 -741 -817 

D (volt - sec) 20.1 18.8 6.6 6.9 3.7 3.0 0.4 

Table 6.23: Controller Parameters for a Fixed Point 
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Kinematic State in Operator Coordinates 

Zeroth Order First Order Second Order 

Handgrip 
Angular 

0.00    0.00    -1.00 
0.00    1.00    0.00 
1.00    0.00    0.00 

0.00 
0.00 
0.00 

0.00 
0.00 
0.00 

Handgrip 
Position 

0.30 
0.15 
0.46 

0.00 
0.00 
0.00 

0.00 
0.00 
0.00 

Elbow 
Angular 

0.00 0.00 0.00 

Controller Parameters 

Joint 1 Joint 2 Joint 3 Joint 4 Joint 5 Joint 6 Joint 7 

9i (deg) 186.6 286.0 -22.7 278.4 0.0 295.6 -21.8 

* (Ä) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Irot  (kg • TO2) 3.141 3.671 0.936 0.726 0.024 0.018 0.002 

Kequ   (N-m) 1160 1788 1303 976 368 383 386 

Kgain (N-m) 5025 5874 1497 1161 38 29 4 

Fdamp (N-m- sec) 251.3 293.7 74.9 58.1 1.9 1.4 0.2 

A 0.8 0.7 0.1 0.2 -8.7 -12.2 -102.4 

Kpro   (volt) 327 345 19 23 -704 -755 -817 

D (volt - sec) 19.7 23.3 7.3 7.0 4.0 3.0 0.4 

Table 6.24: Controller Parameters for a Fixed Point 
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Kinematic State in Operator Coordinates 

Zeroth Order First Order Second Order 

Handgrip 
Angular 

0.00    0.00    -1.00 
0.00    1.00    0.00 
1.00    0.00    0.00 

0.00 
0.00 
0.00 

0.00 
0.00 
0.00 

Handgrip 
Position 

0.30 
-0.15 
0.46 

0.00 
0.00 
0.00 

0.00 
0.00 
0.00 

Elbow 
Angular 

0.00 0.00 0.00 

Controller Parameters 

Joint 1 Joint 2 Joint 3 Joint 4 Joint 5 Joint 6 Joint 7 

0i (deg) 173.4 286.0 22.7 278.4 ,0.0 295.6 21.8 

*  (Ä) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Irot (kg-m2) 3.127 3.726 0.932 0.724 0.024 0.018 0.002 

Kequ (N • m) 1160 1788 1303 976 386 383 386 

Kgain (N-m) 5002 5961 1491 1158 39 30 4 

Fdamp (N-m-sec) 250.1 298.0 74.6 57.9 2.0 1.5 0.2 

A 0.8 0.7 0.1 0.2 -8.4 -11.9 -102.4 

Kpro   (volt) 325 353 19 23 -702 -754 -817 

D (volt ■ sec) 19.6 23.7 7.2 7.0 4.1 3.1 0.4 

Table 6.25: Controller Parameters for a Fixed Point 

109 



Kinematic State in Operator Coordinates 

Zeroth Order First Order Second Order 

Handgrip 
Angular 

0.00    0.00    -1.00 
0.00    1.00    0.00 
1.00    0.00    0.00 

0.00 
0.00 
0.00 

0.00 
0.00 
0.00 

Handgrip 
Position 

0.30 
-0.15 
0.25 

0.00 
0.00 
0.00 

0.00 
0.00 
0.00 

Elbow 
Angular 

0.00 0.00 0.00 

Controller Parameters 

Joint 1 Joint 2 Joint 3 Joint 4 Joint 5 Joint 6 Joint 7 

0i (deg) 182.5 267.1 40.7 303.6 0.0 299.8 40.6 

* (Ä) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Irot (kg • m2) 3.126 3.069 0.845 0.713 0.022 0.018 0.002 

Kequ (N • m) 990 1142 1090 931 375 375 386 

Kgain (N-m) 5001 4911 1351 1140 36 29 4 

Fdamp (N-m- sec) 250.0 245.5 67.6 57.0 1.8 1.4 0.2 

A 0.8 0.8 0.2 0.2 -9.4 -12.0 -102.4 

Kpro   (volt) 339 319 26 26 -724 -739 -817 

D (volt • sec) 19.6 19.2 6.5 6.9 3.8 3.0 0.4 

Table 6.26: Controller Parameters for a Fixed Point 
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Let us consider one sample case for the magnitude of the proportional gain for Joint 1. 
At the worst case position, the gain and equivalent spring pair, Kpro and Kequ, has values 
of 350^^ and 990 ^r respectively. The worst case inertial loading from Table 6.10 is 
17.62 N ■ m, which corresponds to a spring angular deflection of 0.0177 rad which in turn 
corresponds to an applied motor voltage of 6.22 volts. Dividing by the motor resistance we 
have a current of 0.808 amps which is well below the demagnetization current of 11.4 amps. 
This is by no means a universal test. However it establishes a preliminary case that the gains 
are of magnitude to provide the fast response required while not overloading the motors. 

6.3.2    Variation of Parameters 

The most distal three joints are seen to have very little variation of controller parameters 
with mechanism position. This is expected since those joints have very little position de- 
pendence and are included in the system to provide the pure rotational capability of the 
handgrip. This observation suggests that the classical controller assumption is a reasonable 
one to make for the distal joints. 

In considering the proximal joints, the proportional gain values are seen to experience 
a great change. Joint one experiences a 75% increase from the smallest value to the largest 
value based upon the smallest value, to achieve the same values of wn and (,. It would be 
interesting to work the problem the other way to discover the variation of u>n and £ with 
position for constant values of KpT0 and D, in the sense of a pole loci study. The large 
variations of proportional gain value are clearly undesirable. Their effects would have to 
be examined by pole loci studies or time domain simulation. By contrast, the damping 
parameters show smaller variations, the worst case change being approximately 50%. 

6.4    SIMULATION RESULTS 

It was not possible to conduct a successful time domain simulation of the exoskeleton with 
the ADAMS dynamic modelling package. The model was integrated with the controller to 
include the complete equations of motion as given by Equation 4.38 and the motor torques 
given by the error driven proportional gain and the speed driven damping. A great deal of 
resources allocated for the simulation were consumed integrating the controller and virtual 
spring into the ADAMS model. 

The difficulty in the simulation was manifest as an inability of the ADAMS package to 
integrate th'e equations of motion. The first attempts at debugging the simulation consisted 
of suspending the virtual spring feedback, and the controller driving the motor torques. 
An arbitrary set of torques were then applied to the joints to discover if the model would 
execute, which it would not do. This led to the conclusion that the difficulty lay in the 
ADAMS package itself. 
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The software dynamic model was sent to the authors of ADAMS for debugging. The 
authors agreed that the model was of a size such that successful execution would be expected 
based upon past experience with the system. Nothing further was learned about why the 
ADAMS package would not integrate the equations of motion. The model was able to 
converge for trial cases of static equilibrium against the virtual spring. 

The justification for selecting the ADAMS simulation package over writing APL numer- 
ical integration routines was twofold: 

• The ADAMS package would provide numerical confirmation of the APL total inertial 
torques. ADAMS does not give insight into the relative magnitude of the terms com- 
posing the total torque. In this rather complicated system, the independent mutual 
confirmation of the computer models was deemed desirable. 

• Writing successful numerical integration routines for high order dynamic systems can 
be difficult. Since ADAMS was renowned for this capability, it seemed a conservative 
and prudent choice to make. 

At this juncture, it appears better to proceed with additional simulation research by 
writing APL integration routines for the following reasons: 

• The APL language development system is known to run successfully on a personal 
computer. The ADAMS difficulties may possibly have arisen from the particular host 
hardware into which it was loaded. This source of error will be eliminated. 

• Writing the forward dynamics in APL will take very little time given the successful 
state of development of the inverse dynamics. The solid understanding of the inverse 
dynamics will contribute considerably to the debugging of the simulation. 

• Writing the numerical integration in APL will not be time consuming given the current 
state of development. The time required for debugging the integration is always 
difficult to predict. 
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Chapter 7 

CONCLUSIONS AND 
RECOMMENDATIONS 

This research effort attempted to characterize the dynamics of a force reflecting exoskeleton 
system in conjunction with developing a controller for that mechanism. To this end, the 
complete equations of motion and the inverse and forward dynamics were written. The 
equations of motion included an extensive and thorough examination of the redundant 
freedom kinematics. Computer code was written for the forward and inverse kinematics, 
and the inverse dynamics. Additionally, a controller based upon classical techniques with 
simplifying assumptions was postulated, and design software was written for that controller. 

7.1    Conclusions 

These significant conclusions were developed: 

The inverse dynamic code written in APL for analytic purposes only executes at a 
speed which allows serious consideration for its application as actual run time control 
code. 

An 80386 personal computer would be completely adequate for conducting time do- 
main simulations, given the reasonable execution times for the inverse dynamics. Fur- 
thermore, the personal computer would be very cost effective for these simulations by 
avoiding the overhead costs of a mainframe system. 

• The system dynamics were shown to have significant nonlinear terms even at low 

speeds. 

The variation in parameters for the classically based control was shown to exceed 75% 
in some cases. 
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The more distal joints show good potential for control with classic techniques, while 
the proximal joints require further investigation before any solid conclusions can be 
reached. 

Isolated motion of the redundant freedom can cause significant disturbance torques, 
and must be carefully accounted for in controller formulation. 

7.2    Recommendations 

The following recommendations are made based upon the Phase I conclusions: 

• The classical controller has definite merit for some joints and can possibly be made 
sufficiently robust for all other joints. The classically based controller should be 
researched further. 

• The time domain simulation is a very worthwhile tool for examining the controller 
adequacy and it should be pursued. 

• If further simulation work is elected, it should be done under the APL development 
system with self contained numerical integration routines. 

• The dynamic software can be used as a linearization tool to quickly develop a state 
variable model of the total system. This will provide a powerful tool for further 
robot research and development, it will have immediate and useful application to the 
exoskeleton system, and should be pursued in parallel with the classical controller 
continuing investigation. 

114 



Appendix A 

KINEMATIC MATRICES 
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Link 1 Zo 0 0 0 
—• 
0 0 0 

Link 2 Z0 Zx 0 0 0 0 0 

Link 3 Z0 Zx Zi 0 0 
-* 
0 0 

Link 4 Zo Zx z2 Zz 0 0 0 

Link 5 Zo Zx z2 z3 z4 0 0 

Link 6 Zo Zx z2 z3 ZA z5 0 

Link 7 Zo Zx z2 Zz ZA z5 z6 

Table A.l: Angular Velocity Matrices - All Links 

Link 1 

Link 2 

Link 3 

Link 4 

Link 5 

Link 6 

20 x P1/0 

Link 7 

2o x P2/0        2\ x P2/i 

20 X P3/0 2\ X P3/1 22 X P, nj/2 

20 X £4/0 fi X Pt/1 22 X £4/2 23 X ^4/3 

3j X Ps/0 2X X £5/1 2?2 X Pi/2 23 X /*5/3 2K X ^5/4 

#0 X P6/0 2X X /*6/i 22 X P6/2 23 X ^6/3 2K X ^6/4 2S X Pt 6/5 

#0 X P7/0    2X  X A/1     3» X P7/3 23  X P7/3    2« X PT/i 2S  X £7/5    2e  X A /6 

Table A.2: Translation^ Velocity Matrices - All Links 
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0   0   0   0   0   0   0 

0   0   0   0   0   0   0 

0   0   0   0   0   0   0 

0   0   0   0   0   0   0 

0   0   0   0   0   0   0 

0   0   0   0   0   0   0 

0   0   0   0   0   0   0 

Table A.3: Link 1 First Order Angular Acceleration Matrix 

0 0 0 0 0 0 0 

ZoxZi 000000 

0 0 0 0 0 0 0 

0 0 0 0 0 0 0 

0 0 0 0 0 0 0 

0 0 0 0 0 0 0 

0 0 0 0 0 0 0 

L 

Table A.4: Link 2 First Order Angular Acceleration Matrix 
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0   0   0   0   0 

ZoxZi        0        00000 

Z0 x Z2   Z\ x Z2   0   0   0   0   0 

0 0   0   0   0   0 

0   0   0   0   0 

0 0   0   0   0   0 

0   0   0   0   0 

Table A.5: Link 3 First Order Angular Acceleration Matrix 

0 0 

Z0 X 21 ff 

0        0   0   0   0 

0        ff   Ü   0*   0 

Zo X Z2   Zi x Z2 0        0   0   0   0 

Zo x Z3   Zi x Z3   Z2x Z3   0   0   0   0 

0   0   0   0 

0   0   0   0 

0   0   0   0 

Table A.6: Link 4 First Order Angular Acceleration Matrix 
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0 0 0 0 0   0   0 

ZoxZi 0 0 0 000 

Z0 x Z2 Zi x Z2 0 0 0   0   0 

Zo x Z3 Zi x Z3 Z2 x Z3        0 0   0   0 

Z0 x Z4 Z\ x Z4 Z2 x Z4 Z3xZ4 0   0   0 

0 0 0 0 0   0   0 

0 0 0 0 0   0   0 

Table A.7: Link 5 First Order Angular Acceleration Matrix 

0 0 0 0 0   0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

Z0 x Zi         0 0              0 

Zo x Z2 Zi x Z2 0              0 

Z0 x Z3 Zx x Z3 Z2xZ3        0 

Z0 x Z4 Zx x Z4 Z2 x Z4 Z3 x Z4 

Zo x Z5 Zx x Z5 Z2 x Z5 Z3 x Z5   Z4xZ5   0   0 

0             0 0             0             0        0   0 

Table A.8: Link 6 First Order Angular Acceleration Matrix 
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0 0 0 0 

ZoxZi 0 0 
—* 
0 

Z0x Z2 Zi X z2 0 0 

0 

0 

0 

Zo x Z3   Zx x Z3   Z2 x Z3        0 0 

Z0 X Z4   ZiX Z4   Z2 xZ4   Z3xZ4        0 

Z0 XZS   ZXX Zh   Z2 xZs   Z3x Z5   Z4 x Zs 

Z0 xZ6   Zxx Z6   Z2 xZ6   Z3x Z6   Z4 xZ6   Zs x Z6   0 

Table A.9: Link 7 First Order Angular Acceleration Matrix 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

Z0 x (Z0 x P1/Q)   0   0   0   0   0   0 

0 0   0   0   5   0   0 

0 

0 

0 

0 

0 

0   0   0   0   0   0 

0   0   0   0   0   0 

0   0   0   0   0   0 

0   0   0   0   0   0 

0   0   0   0   0   0 

Table A.10: Link 1 First Order Translational Acceleration Matrix 
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Z0 x (Z0 x P2/0) ZoX(Z!xP2/1)   0   0   0   0   0 

Z0 x (Z\ x P2/1) ^1 x (Zx x P2/1)   0   0   0   0   0 

0 0 

0 0 

0 0 

0 0 

0 0                0   000   0 

Table A. 11: Link 2 First Order Translational Acceleration Matrix 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

Z0x(ZoxP3/o) ZoxtZxxPj/i) Zox(Z2xP3/2) 0 0 0 0 

Zo x (Zx x P3/1) Zx x (Zi x P3/1) Z\ x (Z2 x P3/2) 0 0 0 0 

Z0 x (Z2 x P3/2) Z! x (Z2 x P3/2) Z2 x (Z2 x P3/2) 0 0 0 0 

0 0 0 0 0 0 0 

0 0 0 0 0 0 0 

0 0 0 0 0 0 0 

0 0 0 0 0 0 0 

Table A.12: Link 3 First Order Translational Acceleration Matrix 
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Z0 x (Z0 x P4/0) Z0 x (Zi x P4/1) Z0 x (Z2 x P4/2) Z0 x (Z3 x P4/3) 0 0 0 

Z0 x (Zx x P4/1) ZJXCZJX^/X) Zxx{Z2xP4l2) Zxx(Z3xP4/3) 0 0 0 

Z0x(Z2xP4/2) ZiX(Z2xP4/2) Z2x(Z2xP4/2) Z2x(Z3xP4/3) 0 0 0 

Z0x(Z3xP4/3) Zi x (Z3 x P4/3) Z2x(Z3xP4/3) Z3x(Z3xP4/3) 0 0 0 

^                          0                           0                           0* 0 0 0 

o                         o                         0                         0 0 0 0 

o                         o                         0                         0 0 0 0 

Table A.13: Link 4 First Order Translation««! Acceleration Matrix 

2o x (20 x i^o) 20x(21xPi/1) 20 x (22 x Ps/3) 20x(23xPi/3) 20x(2ixPi/i) 5 o 

^0X(^X^S/1) 21x(21XPi/1) 21x(22Xpi/3) 2,X(&xft/s) ?,x(^xi»5/t) 5 Ö 

2o x (22 x £5/2) 2ix(22xPs,2) 22x(22xPi/2) ^x(^x;5/3) 22x(2<xP5/t) ° « 

^ox(^x^/3) 21x(23xPi,3) 22x(23xPh,3) 23x(23xPil3) 23x(2ixPi/i) 
5 ° 

20x(2iXpi/i) ^(^X^) ^X(f4xA/4) ^3X(^X^/4) 2< X {2t X Ps,<) 8 0 

3 5                          8 8                          8 

5 3                          8 8                          8 

o     o 

0       0 

Table A. 14: Link 5 First Order Translation.»] Acceleration Matrix 
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L 

2ox(fo*£6/o) *o*tfi*PtiO 2o*lh*hii) %*(**''«/«' 2o*(*4xi*6/4) £0x(£5xP6/5) o 

£0 x (2j x ^6/i) fi x (ft x P"6/J) Zj x (£2 x ^6/2) fi x (£3 x ^8/3) fl x <f4 * ^6/4) *l x (*s x P6/5) Ö 

£0 x (£2 x *,/a) *, x (£2 x P"6/2) £2 x (£2 x /8/2) £2 x (£3 x /6/s) £2 x (£4 x P"6/4) £2 x (£5 x j»6/5) 0- 

2OX(Z3XP-6/3) *ix (*3"'«/3) ^x («3x^6/3) *3x (£3x^/3) *s« (^V Z3x(£5xp-6/5) 0- 

Ä0«(*4«*e/4) *l*<*«x*«/4> *»*(*«*'»/4> 23X (£4X^6/4) £4X (£4X^,4) £4 X (£5X^5) ff 

£0x(£5xp-6/5) ^x^xV «jx(i5»V £3*(£5xi*6/5)     *4x(*5**6/5> £5x(£5xp-6/5) 0- 

5                             ff 5 ff                             «                             5 0- 

Table A.15: Link 6 First Order Translation«*! Acceleration Matrix 

£0X(£0XPV/0) £ox(2!x^7/1) £0X(£2XPV/2) *o x (£3 x P"7/3) * * <***A/«> ^XAXV *o *l*6 * */*) 

*>x(*, >«*,„) bx&xfyi) *ix(ÄaxiV/a) *i x (£3 x .P7/3) fxxt^x^/,) £, x (£s x P>/5) fix(Z6xP7/6) 

Zox(£2x/57/2) *ix («2x^/2) ^2X(f2x^7/2) £2X(£3XPV/3) £2X(£4XPV/4) £2X(£5XPV/S) £2x(Z6xP7/6) 

fox(f3x^7/3) «ix(f3x^/3) £2x (£3X^,3) £3 x (£3x^3) £3x(£4x^7/4) £3x(£5x^7/5) £3x(Z6xP7/6) 

£0 x («4 x p-7/4) *1 x («4 x P"7/4> *2 x (£4 x fy«) *3 x (*« x fy4) £4 x (£4 x PT/i) £4 x (£5 x PT/5) *4 x (£6 x P7/6) 

£0x(f5x^7/5) ^X^XPV/J) £2x(25x/>7/5) £3x(£5x)»7/5) £4x(£5x^7/5) £5x(£5x/7/5) £5 x (£6 x P"7/6) 

£0x(f6xi»7/6) £1x(26xP7/6) 22x(26x?7/6) £3 x (£6 x P>/6) £4 x (£6 x P>/6) £5 x (£6 x P>/6) £6 x (f6 x P"7/6) 

Table A. 16: Link 7 First Order Translational Acceleration Matrix 
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Link 1 Zo 0 0 0 0 0 0 

Link 2 ZQ Zx 0 
-* 
0 0 0 0 

Link 3 Zo Zx z2 0 
-* 
0 0 0 

Link 4 Zo Zx z2 Zz 0 0 0 

Link 5 Zo Zx z2 Zz ZA 0 i 0 

Link 6 Zo Zx z2 Zz z* Zs 0 

Link 7 Zo Zx z2 Zz z* Zs Z6 

Table A. 17: Second Order Angular Acceleration Matrices - All Links 

Link 1 20 x Plf0 8 0 8 8 s 5 

Link 2 20 x P2/o ix x Pin 0 0 0 0 0 

Link 3 2o X £3/0 2% x P3/1 2% X ft/2 0* 8 3 0 

Link 4 2o x Pt/0 2\ x Pin & X ft/2 #3 X Pi,3 8 0 0 

Link 5 20 x Pi/0 2\ x Pin %2 X ft/2 23 X ft/3 2* x ft/4 0 5 

Link 6 20 x Pt/0 2\ X ft/1 2% x ft/S #3 X ft/3 2* x ft/4 #5 X ft/5 0 

Link 7 20 x PJ/0 2\ x ft/i #2 X PT/3 2j X Pr,3 2K X A/4 2i x ft/s 2* x P7/6 

Table A.18: Second Order Translational Acceleration Matrices - All Links 

124 «U.S. Government Printing Office: 1993 - 750-061/60243 


